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Logistic Regression Practice with Logistic Regression

Outline

• Implement logistic regression in R
• Discuss extensions of logistic regression:

• Transformations
• Multinomial logistic regression
• Penalized logistic regression
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Section 1

Logistic Regression
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Logistic Regression Practice with Logistic Regression

Logistic Regression in R

Recall the simulation of 200 points from the model p = x2
1 +x2
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Logistic Regression Practice with Logistic Regression

Logistic Regression in R

Before we fit the model, we need to pay attention to the response variable:
str(sim_data$Y)

## Factor w/ 2 levels "A","B": 1 2 2 2 2 2 1 1 2 2 ...

• Logistic regression requires the response to either be binary numeric (0 or 1) or a
binary factor

• The model will estimate the probability of the second level (i.e. P(Y = B))

• To change this, we can either recode the response as numeric:
sim_data$Y <- ifelse(sim_data$Y == "A", 1, 0)
head(sim_data$Y)

## [1] 1 0 0 0 0 0

• Or we can relevel the factor:
sim_data$Y <- factor(sim_data$Y, levels = c("B", "A"))
head(sim_data$Y)

## [1] A B B B B B
## Levels: B A
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Logistic Regression Practice with Logistic Regression

Logistic Regression in R

We fit a logistic regression model using the glm function.

sim_logistic <- glm(Y ~ x1 + x2, data = sim_data, family = "binomial")

• We need to include family = "binomial" to tell R we want logistic regression
• We can view the fitted model using summary, or just the coefficient estimates using

$coefficients
summary(sim_logistic)$coefficients

## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.472875 0.5685977 -6.107789 1.010206e-09
## x1 2.746111 0.6570948 4.179170 2.925746e-05
## x2 2.448198 0.5996131 4.082962 4.446520e-05

• From the table, our logistic regression model is

log
p(X1, X2)

1 + p(X1, X2)
= −3.47 + 2.75 · X1 + 2.45 · X2
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Logistic Regression Practice with Logistic Regression

Classification

To classify using logistic regression, we set a classification threshhold (usually 0.5) and
predict Y = 1 if P(x) > 0.5.

• If P(x) = 0.5, then odds are P(x)
1−P(x) = 0.5

0.5 = 1, and log odds are log(1) = 0.
• Thus, we classify Y = 1 if log odds > 0.

• Our fitted model predicting whether Y = A was

log
p(X1, X2)

1 + p(X1, X2)
= −3.47 + 2.75 · X1 + 2.45 · X2

and so we classify Y = A if

0 < −3.47 + 2.75 · X1 + 2.45 · X2

or equivalently, if
X2 > (3.47 − 2.75 · X1)/2.45
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Logistic Regression Practice with Logistic Regression

Decision Boundary

The logistic decision boundary is X2 = (3.47 − 2.75 · X1)/2.45 (purple)
• We classify as A all points above this line, and classify as B all points below this line.
• The Bayes Classifier decision boundary shown in black
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Logistic Regression Practice with Logistic Regression

Prediction

We can use the predict function to classify points using logistic regression.

my_preds <- predict(sim_logistic, newdata = test_data)
head(my_preds)

## 1 2 3 4 5 6
## 0.77874924 -0.03902659 -0.43933156 -0.53148993 -0.03576242 -1.62153528

• By default, predict will output the estimated log-odds for a point
• To instead output estimated probabilities, include type = "response"

my_preds_prob <- predict(sim_logistic, newdata = test_data, type = "response")
head(my_preds_prob)

## 1 2 3 4 5 6
## 0.6854105 0.4902446 0.3919003 0.3701695 0.4910603 0.1649932

• To predict classes, apply the ifelse function to the probability vector
my_preds_class <- ifelse(my_preds_prob > 0.5, "A", "B")
head(my_preds_class)

## 1 2 3 4 5 6
## "A" "B" "B" "B" "B" "B"
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Logistic Regression Practice with Logistic Regression

Visualization

The following graph shows predicted classes for the test set, along with logistic
classification boundary (purple) and theoretical Bayes classifier boundary (black)
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Logistic Regression Practice with Logistic Regression

Transformations

The decision boundary for every logistic regression model will always be linear.
• The rule: classify as 1 if P(Y = 1|X) > 0.5” is equivalent to the rule: classify as 1 if

0 > β0 + β1x1 + β2x2 + · · · + βpxp

• And this is a linear equation in the x ’s

• To create non-linear decision boundaries, we can instead write log-odds as a
non-linear function of the predictors

• For example, we could use polynomial logistic regression:

log odds = β0 + β1x + β2x2 + · · · + βpxp

• Or other non-linear transformations:

log odds = β0 + β1ex1 + β2
√

x2
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Logistic Regression Practice with Logistic Regression

Circular Decision Boundaries

The Bayes Classifier decision boundary is an arc of a circle. Is there a way to use
transformations to achieve this with logistic regression?

• Note that the equation of a circle is r 2 = x2
1 + x2

2 , so we want our log-odds formula to
involve sums of squares of predictors.

sim_mod_circ <- glm(Y ~ I(x1ˆ2) + I(x2ˆ2), data = sim_data, family = "binomial")
summary(sim_mod_circ)$coefficients

## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.505853 0.3842811 -6.520884 6.989438e-11
## I(x1^2) 2.725086 0.6206006 4.391046 1.128068e-05
## I(x2^2) 2.279677 0.5513573 4.134664 3.554747e-05

• Our model equation is log odds = −2.5 + 2.7x2
1 + 2.3 · x2

2

• Setting log-odds equal to 0 actually gives the equation of an ellipse.
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## (Intercept) -2.505853 0.3842811 -6.520884 6.989438e-11
## I(x1^2) 2.725086 0.6206006 4.391046 1.128068e-05
## I(x2^2) 2.279677 0.5513573 4.134664 3.554747e-05

• Our model equation is log odds = −2.5 + 2.7x2
1 + 2.3 · x2

2

• Setting log-odds equal to 0 actually gives the equation of an ellipse.
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Logistic Regression Practice with Logistic Regression

Circular Decision Boundaries

• If we insist on having circular decision boundaries, we could instead use
sim_mod_circ2 <- glm(Y ~ I(x1ˆ2 + x2ˆ2), data = sim_data, family = "binomial")
summary(sim_mod_circ2)$coefficients

## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.497249 0.3829010 -6.521918 6.941413e-11
## I(x1^2 + x2^2) 2.469743 0.4578514 5.394201 6.882910e-08

• Our model equation is log odds = −2.5 + 2.5(x2
1 + x2

2 )
• Setting log-odds equal to 0 actually indeed gives the equation of a circle.
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Logistic Regression Practice with Logistic Regression

Visualization
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Logistic Regression Practice with Logistic Regression

Section 2

Practice with Logistic Regression
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Logistic Regression Practice with Logistic Regression

The Unsinkable Example

The Titanic data set contains information on passengers of the Titanic
## Rows: 1,313
## Columns: 11
## $ row.names <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 1~
## $ pclass <chr> "1st", "1st", "1st", "1st", "1st", "1st", "1st", "1st", "1st~
## $ survived <dbl> 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, ~
## $ name <chr> "Allen, Miss Elisabeth Walton", "Allison, Miss Helen Loraine~
## $ age <dbl> 29.0000, 2.0000, 30.0000, 25.0000, 0.9167, 47.0000, 63.0000,~
## $ embarked <chr> "Southampton", "Southampton", "Southampton", "Southampton", ~
## $ home.dest <chr> "St Louis, MO", "Montreal, PQ / Chesterville, ON", "Montreal~
## $ room <chr> "B-5", "C26", "C26", "C26", "C22", "E-12", "D-7", "A-36", "C~
## $ ticket <chr> "24160 L221", NA, NA, NA, NA, NA, "13502 L77", NA, NA, NA, "~
## $ boat <chr> "2", NA, "(135)", NA, "11", "3", "10", NA, "2", "(22)", "(12~
## $ sex <chr> "female", "female", "male", "female", "male", "male", "femal~

• Goal: Build model for survival based on available predictors.

• Is this primarily an inference or prediction task?
• Can it be neither?
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Logistic Regression Practice with Logistic Regression

Data Analysis
library(skimr)
Titanic %>% select(age, sex, survived) %>% summary()

## age sex survived
## Min. : 0.1667 Length:1313 Min. :0.000
## 1st Qu.:21.0000 Class :character 1st Qu.:0.000
## Median :30.0000 Mode :character Median :0.000
## Mean :31.1942 Mean :0.342
## 3rd Qu.:41.0000 3rd Qu.:1.000
## Max. :71.0000 Max. :1.000
## NA's :680
Titanic %>% count(sex)

## # A tibble: 2 x 2
## sex n
## <chr> <int>
## 1 female 463
## 2 male 850
Titanic %>% count(survived)

## # A tibble: 2 x 2
## survived n
## <dbl> <int>
## 1 0 864
## 2 1 449

• What are some concerns we may have about variables sex, age and survival?

library(tidyr)
Titanic1<-Titanic %>% drop_na(age)

library(rsample)
set.seed(10)
Titanic1_split <- initial_split(Titanic1)
Titanic1_train <- training(Titanic1_split)
Titanic1_test <- testing(Titanic1_split)
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Logistic Regression Practice with Logistic Regression

Children first?

• Who survived the Titanic?
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Logistic Regression Practice with Logistic Regression

Women First?

• Who survived the Titanic?
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Logistic Regression Practice with Logistic Regression

Women and Children First?

Titanic1_train %>% ggplot( aes( x = age, y = survived, color = sex))+
geom_jitter(height = .01, alpha = .5)+theme_bw()
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Logistic Regression Practice with Logistic Regression

Logistic Model 1
Titanic1_train %>% ggplot( aes( x = age, y = survived ))+

geom_jitter(height = .01, alpha = .5)+theme_bw()+
geom_smooth(method = "glm", method.args = list(family = "binomial"), se = F)
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Logistic Regression Practice with Logistic Regression

VS Linear Model
Titanic1_train %>% ggplot( aes( x = age, y = survived ))+

geom_jitter(height = .01, alpha = .5)+theme_bw()+
geom_smooth(method = "glm", method.args = list(family = "binomial"), se = F,size = 2,linetype = "dashed") +
geom_smooth(method = "lm", se = F, color = "red")
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Logistic Regression Practice with Logistic Regression

Logistic Model 2:
library(moderndive)
Titanic1_train %>% ggplot( aes( x = age, y = survived, color = sex ))+

geom_jitter(height = .01, alpha = .5)+theme_bw()+
geom_parallel_slopes(method = "glm", method.args = list(family = "binomial"), se = F)+
labs(title = "Logistic Regression, survival ~ age + sex")
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Logistic Regression Practice with Logistic Regression

Logistic Model 3:
library(moderndive)
Titanic1_train %>% ggplot( aes( x = age, y = survived, color = sex ))+

geom_jitter(height = .01, alpha = .5)+theme_bw()+
geom_smooth(method = "glm", method.args = list(family = "binomial"), se = F)+
labs(title = "Logistic Regression, survival ~ age*sex")

0.00

0.25

0.50

0.75

1.00

0 20 40 60
age

su
rv

iv
ed

sex

female

male

Logistic Regression, survival ~ age*sex

Prof Wells (STA 295: Stat Learning) Logistic Regression Extensions April 4th, 2024 24 / 31



Logistic Regression Practice with Logistic Regression

R code for Logistic Models

simple_logreg <- glm(survived ~ age, data = Titanic1_train, family = "binomial")
summary(simple_logreg)

##
## Call:
## glm(formula = survived ~ age, family = "binomial", data = Titanic1_train)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.2049 -1.0857 -0.9893 1.2625 1.4708
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.086336 0.219226 0.394 0.6937
## age -0.010926 0.006399 -1.707 0.0877 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 649.49 on 473 degrees of freedom
## Residual deviance: 646.54 on 472 degrees of freedom
## AIC: 650.54
##
## Number of Fisher Scoring iterations: 4

• The logistic model is

ln
p(Age)

1 − p(Age)
= 0.09 − 0.01 · Age

• Since

e−0.011 = 0.989 = 1 − 0.011

increasing age by 1 year decreases
survival odds by 1.1% of the current
odds
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Logistic Regression Practice with Logistic Regression

R code for Logistic Models
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• Where is RSE? R2? F -stat?

• Logistic regression is from the family of
generalized linear models

• GLMs use deviance as metric of
model fit.

• Null deviance measures how well
the null model (only intercept)
predicts the data

• Residual deviance measures how
well the fitted model predicts the
data

• Fisher Scoring Iterations indicates the
number of loops of numeric
optimization algorithm

Prof Wells (STA 295: Stat Learning) Logistic Regression Extensions April 4th, 2024 26 / 31



Logistic Regression Practice with Logistic Regression

R code for Logistic Models

simple_logreg <- glm(survived ~ age, data = Titanic1_train, family = "binomial")
summary(simple_logreg)

##
## Call:
## glm(formula = survived ~ age, family = "binomial", data = Titanic1_train)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.2049 -1.0857 -0.9893 1.2625 1.4708
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.086336 0.219226 0.394 0.6937
## age -0.010926 0.006399 -1.707 0.0877 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 649.49 on 473 degrees of freedom
## Residual deviance: 646.54 on 472 degrees of freedom
## AIC: 650.54
##
## Number of Fisher Scoring iterations: 4

• Where is RSE? R2? F -stat?
• Logistic regression is from the family of

generalized linear models
• GLMs use deviance as metric of

model fit.
• Null deviance measures how well

the null model (only intercept)
predicts the data

• Residual deviance measures how
well the fitted model predicts the
data

• Fisher Scoring Iterations indicates the
number of loops of numeric
optimization algorithm

Prof Wells (STA 295: Stat Learning) Logistic Regression Extensions April 4th, 2024 26 / 31



Logistic Regression Practice with Logistic Regression

R code for Logistic Models

simple_logreg <- glm(survived ~ age, data = Titanic1_train, family = "binomial")
summary(simple_logreg)

##
## Call:
## glm(formula = survived ~ age, family = "binomial", data = Titanic1_train)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.2049 -1.0857 -0.9893 1.2625 1.4708
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.086336 0.219226 0.394 0.6937
## age -0.010926 0.006399 -1.707 0.0877 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 649.49 on 473 degrees of freedom
## Residual deviance: 646.54 on 472 degrees of freedom
## AIC: 650.54
##
## Number of Fisher Scoring iterations: 4

• Where is RSE? R2? F -stat?
• Logistic regression is from the family of

generalized linear models
• GLMs use deviance as metric of

model fit.
• Null deviance measures how well

the null model (only intercept)
predicts the data

• Residual deviance measures how
well the fitted model predicts the
data

• Fisher Scoring Iterations indicates the
number of loops of numeric
optimization algorithm
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Logistic Regression Practice with Logistic Regression

R code for Multiple Logistic Models

• Suppose we fit a logistic model for survived ~ age + sex:
logreg <- glm(survived ~ age + sex, data = Titanic1_train, family = "binomial")
summary(logreg)

##
## Call:
## glm(formula = survived ~ age + sex, family = "binomial", data = Titanic1_train)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.0311 -0.6835 -0.5928 0.6363 1.9680
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.953077 0.329108 5.934 2.95e-09 ***
## age -0.013107 0.008136 -1.611 0.107
## sexmale -2.947348 0.245357 -12.012 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 649.49 on 473 degrees of freedom
## Residual deviance: 457.81 on 471 degrees of freedom
## AIC: 463.81
##
## Number of Fisher Scoring iterations: 4

• What is the formula for the logistic
model?

• What is the survival odds for a male
child of age 5? A female child of age
5?

• What effect does being male have on
survival odds?
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Logistic Regression Practice with Logistic Regression

R code for Multiple Logistic Models

• Suppose we fit a logistic model for survived ~ age * sex:
logreg2 <- glm(survived ~ age * sex, data = Titanic1_train, family = "binomial")
summary(logreg2)

##
## Call:
## glm(formula = survived ~ age * sex, family = "binomial", data = Titanic1_train)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.1814 -0.7023 -0.4754 0.6428 2.2616
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.89363 0.43623 2.048 0.0405 *
## age 0.02204 0.01402 1.572 0.1159
## sexmale -1.24793 0.55518 -2.248 0.0246 *
## age:sexmale -0.05741 0.01797 -3.195 0.0014 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 649.49 on 473 degrees of freedom
## Residual deviance: 446.95 on 470 degrees of freedom
## AIC: 454.95
##
## Number of Fisher Scoring iterations: 4

• What is the formula for the logistic
model?

• What is the survival odds for a male
child of age 5? A female child of age
5?

• What effect did male have on survival
odds?
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Logistic Regression Practice with Logistic Regression

Classify Points

First, we obtain predicted probabilities for each of the 3 models:

preds_simple <- predict(simple_logreg, newdata = Titanic1_test, type = "response")
preds_logreg <- predict(logreg, newdata = Titanic1_test, type = "response")
preds_logreg2 <- predict(logreg2, newdata = Titanic1_test, type = "response")

• Now we assemble information into a long data frame:
my_results <- data.frame(

passenger_id = rep(1:159, times = 3),
prob = c(preds_simple, preds_logreg, preds_logreg2),
model = rep(c("simple", "logreg1", "logreg2"), each = 159),
obs = rep(as.factor(Titanic1_test$survived), times = 3))

head(my_results, 5)

## passenger_id prob model obs
## 1 1 0.4426271 simple 1
## 2 2 0.5190708 simple 1
## 3 3 0.3538913 simple 1
## 4 4 0.3664795 simple 1
## 5 5 0.3948028 simple 0

tail(my_results, 5)

## passenger_id prob model obs
## 473 155 0.2246623 logreg2 0
## 474 156 0.1792104 logreg2 0
## 475 157 0.7528725 logreg2 0
## 476 158 0.1456248 logreg2 0
## 477 159 0.1844731 logreg2 0

• Finally, we classify points
my_results <- my_results %>% mutate(pred = as.factor(ifelse(prob > 0.5, 1, 0)))
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Logistic Regression Practice with Logistic Regression

Assessing Accuracy

Since all predictions and observations for the 3 models are in the same data frame, we can
use group_by to simultaneously assess:
library(yardstick)
my_results %>% group_by(model) %>%

accuracy(truth = obs, estimate = pred)

## # A tibble: 3 x 4
## model .metric .estimator .estimate
## <chr> <chr> <chr> <dbl>
## 1 logreg1 accuracy binary 0.774
## 2 logreg2 accuracy binary 0.774
## 3 simple accuracy binary 0.572
my_results %>% group_by(model) %>%

roc_auc(truth = obs, prob, event_level = "second")

## # A tibble: 3 x 4
## model .metric .estimator .estimate
## <chr> <chr> <chr> <dbl>
## 1 logreg1 roc_auc binary 0.783
## 2 logreg2 roc_auc binary 0.806
## 3 simple roc_auc binary 0.534
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Logistic Regression Practice with Logistic Regression

ROC Curve
r<- my_results %>% group_by(model) %>%

roc_curve(truth = obs, prob, event_level = "second")

autoplot(r)
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