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Logistic Regression Interpreting and Estimating Coefficients

Outline

• Discuss logistic regression for classification
• Describe extensions of logistic regression: multivariate and multinomial
• Implement logistic regression in R
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Section 1

Logistic Regression
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Logistic Regression Interpreting and Estimating Coefficients

Classificaiton Problems

• Suppose Y is a categorical variable with levels A1, A2, . . . , Ak .

• Example: Let Y indicate whether it is raining in Portland at noon on 10/25/21.
• Levels: A1 = Raining, A2 = Not Raining.

• Goal: Build a model f to classify an observation into levels A1, A2, . . . , Ak based on
the values of several predictors X1, X2, . . . , Xp (quantitative or categorical)

Ŷ = f (X1, X2, . . . , Xp) where f take values in {A1, . . . , Ak}
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Logistic Regression Interpreting and Estimating Coefficients

Classification Regions

Any classification model will divide predictor space into unions of regions, where each point
in a region will be classified in the same way.
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Different models will have different geometries for classification boundaries.
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The purple line indicates the optimal decision boundary.
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Logistic Regression Interpreting and Estimating Coefficients

The Bayes Classifier and KNN

• The Bayes classifier theoretically minimizes error rate

f (x0) = argmaxAj P(Y = Aj | X = x0)

• In practice, these conditional probabilities are not known.

• But we can approximate them using KNN:

P(Y = Aj | X = x0) ≈ 1
K

∑
i∈N0

I(yi = Aj)

• Our model for P is therefore P̂j(x0) = 1
K

∑
i∈N0

I(yi = Aj).

• And our classifier model is ĝ(x0) = argmaxAj P̂j(x0)
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Why not always just use KNN?

1 KNN has very low training time (basically none), but often large test time (especially
for large K)

2 KNN models are hard to interpret, so often not ideal for inference questions.

3 If a linear or more structured model is more appropriate (i.e. accurately captures the
true form of f ), then KNN will be less stable.

4 KNN suffers from the “curse of dimensionality”. For fixed K and large p, adding more
predictors increases bias and variance.

5 KNN requires large sample sizes (compared to alternatives)
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Logistic Regression Interpreting and Estimating Coefficients

Alternatives

• Suppose Y is a binary categorical variable with a single quantitative predictor X . We
want to model p(X) = P(Y = 1|X)
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• Linear model: p(X) = β0 + β1X = −0.07 + 0.008X

• Predict 1 if P̂(x) ≥ 0.5, and 0 otherwise.
• Solving the linear equation, predict 1 if X ≥ 73.4
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Logistic Regression Interpreting and Estimating Coefficients

Problems with linear model

1 Our prediction p(X) may take values outside 0 and 1.

2 Too inflexible (enormous bias).

3 In practice, p(X) is rarely close to linear.
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Logistic Regression Interpreting and Estimating Coefficients

Odds

• Suppose a certain event occurs with probability p. The odds of the event occurring are

odds = p
1 − p

• If p = .75, then odds = 3 (or 3 to 1).
• If p = .5, then odds = 1 (or even odds).

• But odds compress unlikely events towards 0, while stretching likely events towards
infinity.

• Events that are less likely to happen than not have odds between 0 and 1, while events
that are more likely to happen than not have odds between 1 and infinity.

• So instead, we consider log odds:

log odds = ln p
1 − p = ln p − ln(1 − p)
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Logistic Regression Interpreting and Estimating Coefficients

Logistic Regression

• Suppose Y is binary categorical, and that the log odds of the event “Y = 1” is linear
in X . That is,

ln p(X)
1 − p(X) = β0 + β1X

• Increasing X by 1 increases the log odds of Y = 1 by a constant amount.
• Increasing X by 1 increases the odds of Y = 1 by a constant relative rate
• Solving for odds:

p(X)
1 − p(X) = eβ0+β1X

• Solving for p(X):

p(X) = eβ0+β1X

1 + eβ0+β1X
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Logistic Regression Interpreting and Estimating Coefficients

The Logistic Curve

• The conditional probability p(X) takes the form of a logistic curve:

p(X) =
eβ0+β1X

1 + eβ0+β1X
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• Logistic model: p(X) = e−4+0.05X

1+e−4+0.05X

• Predict 1 if P̂(x) ≥ 0.5 (or if log odds ≥ 0)
• Solving the linear equation, predict 1 if X ≥ 73.1
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Logistic Regression Interpreting and Estimating Coefficients

Multiple Logistic Regression

• Nothing stops us from modeling Y based on more than 1 predictor.

ln
p(X)

1 − p(X)
= β0 + β1X1 + · · · + βpXp

• Solving for p(X):

p(X) =
eβ0+β1X1+···+βpXp

1 + eβ0+β1X1+···+βpXp

• An interactive graphic is available on on Thursday 4/4 on schedule page of course website.

Prof Wells (STA 295: Stat Learning) Logistic Regression April 4th, 2024 15 / 27



Logistic Regression Interpreting and Estimating Coefficients

Multiple Logistic Regression

• Nothing stops us from modeling Y based on more than 1 predictor.

ln
p(X)

1 − p(X)
= β0 + β1X1 + · · · + βpXp

• Solving for p(X):

p(X) =
eβ0+β1X1+···+βpXp

1 + eβ0+β1X1+···+βpXp

• An interactive graphic is available on on Thursday 4/4 on schedule page of course website.

Prof Wells (STA 295: Stat Learning) Logistic Regression April 4th, 2024 15 / 27



Logistic Regression Interpreting and Estimating Coefficients

Multiple Logistic Regression

• Nothing stops us from modeling Y based on more than 1 predictor.

ln
p(X)

1 − p(X)
= β0 + β1X1 + · · · + βpXp

• Solving for p(X):

p(X) =
eβ0+β1X1+···+βpXp

1 + eβ0+β1X1+···+βpXp

• An interactive graphic is available on on Thursday 4/4 on schedule page of course website.

Prof Wells (STA 295: Stat Learning) Logistic Regression April 4th, 2024 15 / 27



Logistic Regression Interpreting and Estimating Coefficients

Multiple Logistic Regression

• Nothing stops us from modeling Y based on more than 1 predictor.

ln
p(X)

1 − p(X)
= β0 + β1X1 + · · · + βpXp

• Solving for p(X):

p(X) =
eβ0+β1X1+···+βpXp

1 + eβ0+β1X1+···+βpXp

• An interactive graphic is available on on Thursday 4/4 on schedule page of course website.

Prof Wells (STA 295: Stat Learning) Logistic Regression April 4th, 2024 15 / 27



Logistic Regression Interpreting and Estimating Coefficients

Applications of Logistic Regression

Logistic Regression is the most commonly used binary classification method. . .

1 For historical reasons

2 Due to its relative simplicity

3 For ease of interpretation

4 Because it often gives reasonable predictions

Logistic regression has been used to. . .

1 Create spam filters

2 Forecast election results

3 Investigate health outcomes based on patient risk factors
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Logistic Regression Interpreting and Estimating Coefficients

Section 2

Interpreting and Estimating Coefficients
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Logistic Regression Interpreting and Estimating Coefficients

Effect of Coefficients in Logistic Model

Consider a logistic regression model for a binary variable Y based on predictor X .

ln
p(X)

1 − p(X)
= β0 + β1X p(X) =

eβ0+β1X

1 + eβ0+β1X
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Effect of Slope, with constant intercept of 0
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Logistic Regression Interpreting and Estimating Coefficients

Interpreting Coefficients

Consider a logistic regression model for a binary variable Y based on predictor X .

ln
p(X)

1 − p(X)
= β0 + β1X p(X) =

eβ0+β1X

1 + eβ0+β1X

• The intercept β0 is the log-odds when X = 0. Alternatively,

odds(Y = 1|X = 0) = eβ0 Prob(Y = 1|X = 0) =
eβ0

1 + eβ0

• The slope β1 is rate of change in log-odds when X increases by 1 unit. Alternatively,
odds(Y = 1|X = x + 1) = eβ0+β1(x+1) =eβ0+β1x+β1 = eβ1 · eβ0+β1x

=eβ1 · odds(Y = 1|X = x)

which shows that when X increases by 1 unit, the odds change by a factor of eβ1 .
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Logistic Regression Interpreting and Estimating Coefficients

Regression Coefficient Estimates

• Assume that the log-odds of Y = 1 is indeed linear in X1, . . . , Xp, so that

ln p(X)
1 − p(X) = β0 + β1X1 + · · · + βpXp

• We need to estimate the parameters β0, β1, . . . , βp based on training data.
• We could use the Method of Least Squares, as we did with Linear Regression.

β = (XT X)−1XT y

• But this won’t necessarily produce accurate estimates, since residuals tend not to be
approximately Normally distributed

• Instead, we use the method of Maximum Likelihood (ML)
• We consider all possible values of β0, . . . , βp , and choose the ones for which the

observed data x had highest probability of occurring.
• I.e. we choose the model which is most consistent with the data.
• How? Use numeric methods to optimize (and R)
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Logistic Regression Interpreting and Estimating Coefficients

Logistic Regression in R

Recall the simulation of 200 points from the model p = x2
1 +x2
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Logistic Regression Interpreting and Estimating Coefficients

Logistic Regression in R

Before we fit the model, we need to pay attention to the response variable:
str(sim_data$Y)

## Factor w/ 2 levels "A","B": 1 2 2 2 2 2 1 1 2 2 ...

• Logistic regression requires the response to either be binary numeric (0 or 1) or a
binary factor

• The model will estimate the probability of the second level (i.e. P(Y = B))

• To change this, we can either recode the response as numeric:
sim_data$Y <- ifelse(sim_data$Y == "A", 1, 0)
head(sim_data$Y)

## [1] 1 0 0 0 0 0

• Or we can relevel the factor:
sim_data$Y <- factor(sim_data$Y, levels = c("B", "A"))
head(sim_data$Y)

## [1] A B B B B B
## Levels: B A
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Logistic Regression Interpreting and Estimating Coefficients

Logistic Regression in R

We fit a logistic regression model using the glm function.

sim_logistic <- glm(Y ~ x1 + x2, data = sim_data, family = "binomial")

• We need to include family = "binomial" to tell R we want logistic regression
• We can view the fitted model using summary, or just the coefficient estimates using

$coefficients
summary(sim_logistic)$coefficients

## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.472875 0.5685977 -6.107789 1.010206e-09
## x1 2.746111 0.6570948 4.179170 2.925746e-05
## x2 2.448198 0.5996131 4.082962 4.446520e-05

• From the table, our logistic regression model is

log
p(X1, X2)

1 + p(X1, X2)
= −3.47 + 2.75 · X1 + 2.45 · X2
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Logistic Regression Interpreting and Estimating Coefficients

Classification

To classify using logistic regression, we set a classification threshhold (usually 0.5) and
predict Y = 1 if P(x) > 0.5.

• Note that if P(x) = 0.5, then odds are P(x)/(1 − P(x)) = 0.5/0.5 = 1, and the log
odds are log(1) = 0.

• Thus, we classify Y = 1 if log odds > 0.

• Our fitted model predicting whether Y = A was

log
p(X1, X2)

1 + p(X1, X2)
= −3.47 + 2.75 · X1 + 2.45 · X2

and so we classify Y = A if

0 < −3.47 + 2.75 · X1 + 2.45 · X2

or equivalently, if
X2 > (3.47 − 2.75 · X1)/2.45
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Logistic Regression Interpreting and Estimating Coefficients

Classification

To classify using logistic regression, we set a classification threshhold (usually 0.5) and
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Logistic Regression Interpreting and Estimating Coefficients

Decision Boundary

The logistic decision boundary is X2 = (3.47 − 2.75 · X1)/2.45 (purple)
• We classify as A all points above this line, and classify as B all points below this line.
• The Bayes Classifier decision boundary shown in black
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