Prof Wells

STA 295: Stat Learning

April 4th, 2024

Outline

- Discuss logistic regression for classification
- Describe extensions of logistic regression: multivariate and multinomial
- Implement logistic regression in R

Section 1

Logistic Regression

Classification Problems

• Suppose Y is a categorical variable with levels A_1, A_2, \ldots, A_k .

Classification Problems

- Suppose Y is a categorical variable with levels A_1, A_2, \ldots, A_k .
 - Example: Let Y indicate whether it is raining in Portland at noon on 10/25/21.
 - Levels: $A_1 = \text{Raining}$, $A_2 = \text{Not Raining}$.

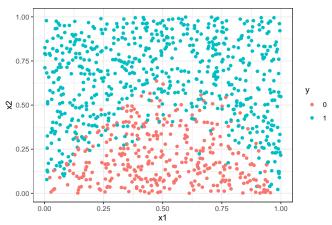
Classification Problems

- Suppose Y is a categorical variable with levels A_1, A_2, \ldots, A_k .
 - Example: Let Y indicate whether it is raining in Portland at noon on 10/25/21.
 - Levels: $A_1 = \text{Raining}$, $A_2 = \text{Not Raining}$.
- Goal: Build a model f to classify an observation into levels A_1, A_2, \ldots, A_k based on the values of several predictors X_1, X_2, \ldots, X_p (quantitative or categorical)

$$\hat{Y} = f(X_1, X_2, \dots, X_p)$$
 where f take values in $\{A_1, \dots, A_k\}$

Classification Regions

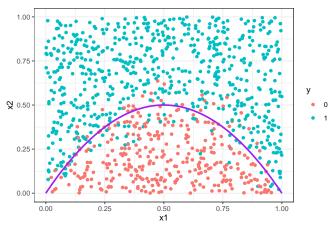
Any classification model will divide predictor space into unions of regions, where each point in a region will be classified in the same way.



Different models will have different geometries for classification boundaries.

Classification Regions

Any classification model will divide predictor space into unions of regions, where each point in a region will be classified in the same way.



The purple line indicates the optimal decision boundary.

• The Bayes classifier theoretically minimizes error rate

$$f(x_0) = \operatorname{argmax}_{A_j} P(Y = A_j \,|\, X = x_0)$$

• The Bayes classifier theoretically minimizes error rate

$$f(x_0) = \operatorname{argmax}_{A_i} P(Y = A_i \mid X = x_0)$$

• In practice, these conditional probabilities are not known.

The Bayes classifier theoretically minimizes error rate

$$f(x_0) = \operatorname{argmax}_{A_i} P(Y = A_i \mid X = x_0)$$

- In practice, these conditional probabilities are not known.
- But we can approximate them using KNN:

$$P(Y = A_j | X = x_0) \approx \frac{1}{K} \sum_{i \in N_0} I(y_i = A_j)$$

The Bayes classifier theoretically minimizes error rate

$$f(x_0) = \operatorname{argmax}_{A_i} P(Y = A_i \mid X = x_0)$$

- In practice, these conditional probabilities are not known.
- But we can approximate them using KNN:

$$P(Y = A_j | X = x_0) \approx \frac{1}{K} \sum_{i \in N_0} I(y_i = A_j)$$

• Our model for P is therefore $\hat{P}_j(x_0) = \frac{1}{K} \sum_{i \in N_0} I(y_i = A_j)$.

The Bayes classifier theoretically minimizes error rate

$$f(x_0) = \operatorname{argmax}_{A_i} P(Y = A_i \mid X = x_0)$$

- In practice, these conditional probabilities are not known.
- But we can approximate them using KNN:

$$P(Y = A_j | X = x_0) \approx \frac{1}{K} \sum_{i \in N_0} I(y_i = A_j)$$

- Our model for P is therefore $\hat{P}_j(x_0) = \frac{1}{K} \sum_{i \in N_0} I(y_i = A_j)$.
- And our classifier model is $\hat{g}(x_0) = \operatorname{argmax}_{A_i} \hat{P}_j(x_0)$

f o KNN has very low training time (basically none), but often large test time (especially for large K)

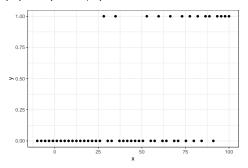
- f 0 KNN has very low training time (basically none), but often large test time (especially for large K)
- **②** KNN models are hard to interpret, so often not ideal for inference questions.

- f o KNN has very low training time (basically none), but often large test time (especially for large K)
- **2** KNN models are hard to interpret, so often not ideal for inference questions.
- **6** If a linear or more structured model is more appropriate (i.e. accurately captures the true form of f), then KNN will be less stable.

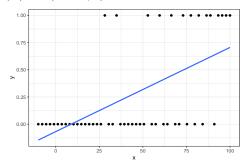
- f o KNN has very low training time (basically none), but often large test time (especially for large K)
- **2** KNN models are hard to interpret, so often not ideal for inference questions.
- If a linear or more structured model is more appropriate (i.e. accurately captures the true form of f), then KNN will be less stable.
- **4** SNN suffers from the "curse of dimensionality". For fixed K and large p, adding more predictors increases bias and variance.

- f o KNN has very low training time (basically none), but often large test time (especially for large K)
- **2** KNN models are hard to interpret, so often not ideal for inference questions.
- If a linear or more structured model is more appropriate (i.e. accurately captures the true form of f), then KNN will be less stable.
- **6** KNN suffers from the "curse of dimensionality". For fixed K and large p, adding more predictors increases bias and variance.
- 6 KNN requires large sample sizes (compared to alternatives)

• Suppose Y is a binary categorical variable with a single quantitative predictor X. We want to model p(X) = P(Y = 1|X)

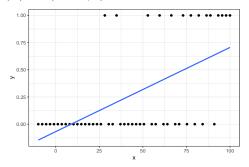


• Suppose Y is a binary categorical variable with a single quantitative predictor X. We want to model p(X) = P(Y = 1|X)



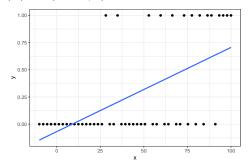
• Linear model: $p(X) = \beta_0 + \beta_1 X = -0.07 + 0.008X$

• Suppose Y is a binary categorical variable with a single quantitative predictor X. We want to model p(X) = P(Y = 1|X)



- Linear model: $p(X) = \beta_0 + \beta_1 X = -0.07 + 0.008X$
- Predict 1 if $\hat{P}(x) \ge 0.5$, and 0 otherwise.

• Suppose Y is a binary categorical variable with a single quantitative predictor X. We want to model p(X) = P(Y = 1|X)



- Linear model: $p(X) = \beta_0 + \beta_1 X = -0.07 + 0.008X$
- Predict 1 if $\hat{P}(x) \ge 0.5$, and 0 otherwise.
 - Solving the linear equation, predict 1 if $X \ge 73.4$

Problems with linear model

1 Our prediction p(X) may take values outside 0 and 1.

Problems with linear model

- **1** Our prediction p(X) may take values outside 0 and 1.
- Too inflexible (enormous bias).

Problems with linear model

- **1** Our prediction p(X) may take values outside 0 and 1.
- 2 Too inflexible (enormous bias).
- **3** In practice, p(X) is rarely close to linear.

$$\text{odds} = \frac{p}{1 - p}$$

$$odds = \frac{p}{1 - p}$$

- If p = .75, then odds = 3 (or 3 to 1).
- If p = .5, then odds = 1 (or even odds).

$$odds = \frac{p}{1 - p}$$

- If p = .75, then odds = 3 (or 3 to 1).
- If p = .5, then odds = 1 (or even odds).
- But odds compress unlikely events towards 0, while stretching likely events towards infinity.

$$odds = \frac{p}{1 - p}$$

- If p = .75, then odds = 3 (or 3 to 1).
- If p = .5, then odds = 1 (or even odds).
- But odds compress unlikely events towards 0, while stretching likely events towards infinity.
 - Events that are less likely to happen than not have odds between 0 and 1, while events that are more likely to happen than not have odds between 1 and infinity.

$$odds = \frac{p}{1 - p}$$

- If p = .75, then odds = 3 (or 3 to 1).
- If p = .5, then odds = 1 (or even odds).
- But odds compress unlikely events towards 0, while stretching likely events towards infinity.
 - Events that are less likely to happen than not have odds between 0 and 1, while events
 that are more likely to happen than not have odds between 1 and infinity.
- So instead, we consider log odds:

$$\log \text{ odds} = \ln \frac{p}{1-p} = \ln p - \ln(1-p)$$

• Suppose Y is binary categorical, and that the log odds of the event "Y=1" is linear in X. That is,

• Suppose Y is binary categorical, and that the log odds of the event "Y=1" is linear in X. That is,

$$\ln \frac{p(X)}{1 - p(X)} = \beta_0 + \beta_1 X$$

• Suppose Y is binary categorical, and that the log odds of the event "Y=1" is linear in X. That is,

$$\ln \frac{p(X)}{1 - p(X)} = \beta_0 + \beta_1 X$$

• Increasing X by 1 increases the log odds of Y = 1 by a constant amount.

• Suppose Y is binary categorical, and that the log odds of the event "Y=1" is linear in X. That is,

$$\ln \frac{p(X)}{1 - p(X)} = \beta_0 + \beta_1 X$$

- Increasing X by 1 increases the log odds of Y=1 by a constant amount.
- Increasing X by 1 increases the odds of Y=1 by a constant *relative rate*

• Suppose Y is binary categorical, and that the log odds of the event "Y=1" is linear in X. That is,

$$\ln \frac{p(X)}{1 - p(X)} = \beta_0 + \beta_1 X$$

- Increasing X by 1 increases the log odds of Y = 1 by a constant amount.
- Increasing X by 1 increases the odds of Y=1 by a constant *relative rate*
- Solving for odds:

$$\frac{p(X)}{1-p(X)}=e^{\beta_0+\beta_1X}$$

• Suppose Y is binary categorical, and that the log odds of the event "Y=1" is linear in X. That is,

$$\ln \frac{p(X)}{1 - p(X)} = \beta_0 + \beta_1 X$$

- Increasing X by 1 increases the log odds of Y = 1 by a constant amount.
- Increasing X by 1 increases the odds of Y=1 by a constant *relative rate*
- Solving for odds:

$$\frac{p(X)}{1-p(X)}=e^{\beta_0+\beta_1X}$$

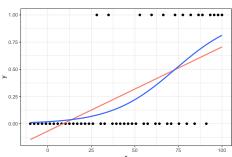
Solving for p(X):

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

The Logistic Curve

• The conditional probability p(X) takes the form of a logistic curve:

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

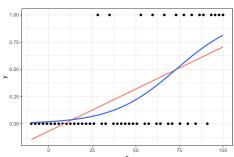


• Logistic model: $p(X) = \frac{e^{-4+0.05X}}{1+e^{-4+0.05X}}$

The Logistic Curve

• The conditional probability p(X) takes the form of a logistic curve:

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

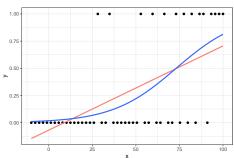


- Logistic model: $p(X) = \frac{e^{-4+0.05X}}{1+e^{-4+0.05X}}$
- Predict 1 if $\hat{P}(x) \ge 0.5$ (or if $\log \text{ odds } \ge 0$)

The Logistic Curve

• The conditional probability p(X) takes the form of a logistic curve:

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$



- Logistic model: $p(X) = \frac{e^{-4+0.05X}}{1+e^{-4+0.05X}}$
- Predict 1 if $\hat{P}(x) \ge 0.5$ (or if $\log odds \ge 0$)
 - Solving the linear equation, predict 1 if $X \ge 73.1$

ullet Nothing stops us from modeling Y based on more than 1 predictor.

ullet Nothing stops us from modeling Y based on more than 1 predictor.

$$\ln \frac{p(X)}{1 - p(X)} = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

ullet Nothing stops us from modeling Y based on more than 1 predictor.

$$\ln \frac{p(X)}{1 - p(X)} = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

• Solving for p(X):

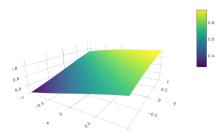
$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$

Nothing stops us from modeling Y based on more than 1 predictor.

$$\ln \frac{p(X)}{1 - p(X)} = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

• Solving for p(X):

$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$



Applications of Logistic Regression

Logistic Regression is the most commonly used binary classification method. . .

Applications of Logistic Regression

Logistic Regression is the most commonly used binary classification method. . .

- For historical reasons
- Oue to its relative simplicity
- For ease of interpretation
- 4 Because it often gives reasonable predictions

Applications of Logistic Regression

Logistic Regression is the most commonly used binary classification method...

- For historical reasons
- Oue to its relative simplicity
- For ease of interpretation
- 4 Because it often gives reasonable predictions

Logistic regression has been used to...

- Create spam filters
- Porecast election results
- Investigate health outcomes based on patient risk factors

Section 2

Interpreting and Estimating Coefficients

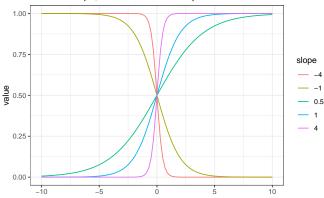
Consider a logistic regression model for a binary variable Y based on predictor X.

$$\ln \frac{p(X)}{1 - p(X)} = \beta_0 + \beta_1 X \qquad p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

Consider a logistic regression model for a binary variable Y based on predictor X.

$$\ln \frac{p(X)}{1 - p(X)} = \beta_0 + \beta_1 X \qquad p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

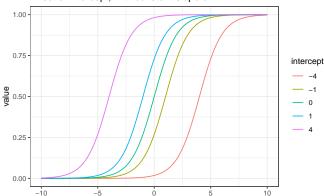
Effect of Slope, with constant intercept of 0



Consider a logistic regression model for a binary variable Y based on predictor X.

$$\ln \frac{p(X)}{1 - p(X)} = \beta_0 + \beta_1 X \qquad p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

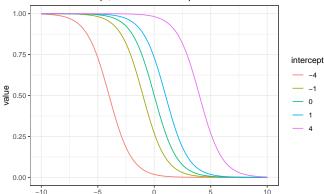
Effect of Intercept, with constant slope of 1



Consider a logistic regression model for a binary variable Y based on predictor X.

$$\ln \frac{p(X)}{1 - p(X)} = \beta_0 + \beta_1 X \qquad p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

Effect of Intercept, with constant slope of -1



Consider a logistic regression model for a binary variable Y based on predictor X.

$$\ln \frac{p(X)}{1 - p(X)} = \beta_0 + \beta_1 X \qquad p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

Consider a logistic regression model for a binary variable Y based on predictor X.

$$\ln \frac{p(X)}{1 - p(X)} = \beta_0 + \beta_1 X \qquad p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

• The intercept β_0 is the log-odds when X=0. Alternatively,

$${
m odds}(Y=1|X=0)=e^{eta_0} \qquad {
m Prob}(Y=1|X=0)=rac{e^{eta_0}}{1+e^{eta_0}}$$

Consider a logistic regression model for a binary variable Y based on predictor X.

$$\ln \frac{p(X)}{1 - p(X)} = \beta_0 + \beta_1 X \qquad p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

• The intercept β_0 is the log-odds when X=0. Alternatively,

odds
$$(Y = 1 | X = 0) = e^{\beta_0}$$
 Prob $(Y = 1 | X = 0) = \frac{e^{\beta_0}}{1 + e^{\beta_0}}$

ullet The slope eta_1 is rate of change in log-odds when X increases by 1 unit. Alternatively,

Consider a logistic regression model for a binary variable Y based on predictor X.

$$\ln \frac{p(X)}{1 - p(X)} = \beta_0 + \beta_1 X \qquad p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

• The intercept β_0 is the log-odds when X=0. Alternatively,

$$odds(Y = 1|X = 0) = e^{\beta_0}$$
 $Prob(Y = 1|X = 0) = \frac{e^{\beta_0}}{1 + e^{\beta_0}}$

ullet The slope eta_1 is rate of change in log-odds when X increases by 1 unit. Alternatively,

$$\begin{aligned} \operatorname{odds}(Y = 1 | X = x + 1) &= e^{\beta_0 + \beta_1(x+1)} = e^{\beta_0 + \beta_1 x + \beta_1} = e^{\beta_1} \cdot e^{\beta_0 + \beta_1 x} \\ &= e^{\beta_1} \cdot \operatorname{odds}(Y = 1 | X = x) \end{aligned}$$

which shows that when X increases by 1 unit, the odds change by a factor of e^{β_1} .

• Assume that the log-odds of Y=1 is indeed linear in X_1,\ldots,X_p , so that

$$\ln \frac{p(X)}{1 - p(X)} = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

• Assume that the log-odds of Y = 1 is indeed linear in X_1, \ldots, X_p , so that

$$\ln \frac{p(X)}{1 - p(X)} = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

• We need to estimate the parameters $\beta_0, \beta_1, \dots, \beta_p$ based on training data.

• Assume that the log-odds of Y = 1 is indeed linear in X_1, \ldots, X_p , so that

$$\ln \frac{p(X)}{1 - p(X)} = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

- We need to estimate the parameters $\beta_0, \beta_1, \dots, \beta_p$ based on training data.
- We could use the Method of Least Squares, as we did with Linear Regression.

$$\beta = (X^T X)^{-1} X^T y$$

• Assume that the log-odds of Y = 1 is indeed linear in X_1, \ldots, X_p , so that

$$\ln \frac{p(X)}{1-p(X)} = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

- We need to estimate the parameters $\beta_0, \beta_1, \dots, \beta_p$ based on training data.
- We could use the Method of Least Squares, as we did with Linear Regression.

$$\beta = (X^T X)^{-1} X^T y$$

 But this won't necessarily produce accurate estimates, since residuals tend not to be approximately Normally distributed

• Assume that the log-odds of Y=1 is indeed linear in X_1,\ldots,X_p , so that

$$\ln \frac{p(X)}{1-p(X)} = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

- We need to estimate the parameters $\beta_0, \beta_1, \dots, \beta_p$ based on training data.
- We could use the Method of Least Squares, as we did with Linear Regression.

$$\beta = (X^T X)^{-1} X^T y$$

- But this won't necessarily produce accurate estimates, since residuals tend not to be approximately Normally distributed
- Instead, we use the method of Maximum Likelihood (ML)

• Assume that the log-odds of Y = 1 is indeed linear in X_1, \ldots, X_p , so that

$$\ln \frac{p(X)}{1-p(X)} = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

- We need to estimate the parameters $\beta_0, \beta_1, \dots, \beta_p$ based on training data.
- We could use the Method of Least Squares, as we did with Linear Regression.

$$\beta = (X^T X)^{-1} X^T y$$

- But this won't necessarily produce accurate estimates, since residuals tend not to be approximately Normally distributed
- Instead, we use the method of Maximum Likelihood (ML)
 - We consider all possible values of β_0, \ldots, β_p , and choose the ones for which the observed data x had highest probability of occurring.

• Assume that the log-odds of Y = 1 is indeed linear in X_1, \ldots, X_p , so that

$$\ln \frac{p(X)}{1-p(X)} = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

- We need to estimate the parameters $\beta_0, \beta_1, \dots, \beta_p$ based on training data.
- We could use the Method of Least Squares, as we did with Linear Regression.

$$\beta = (X^T X)^{-1} X^T y$$

- But this won't necessarily produce accurate estimates, since residuals tend not to be approximately Normally distributed
- Instead, we use the method of Maximum Likelihood (ML)
 - We consider all possible values of \(\beta_0, \ldots, \beta_p\), and choose the ones for which the observed data \(x\) had highest probability of occurring.
 - I.e. we choose the model which is most consistent with the data.

• Assume that the log-odds of Y=1 is indeed linear in X_1,\ldots,X_p , so that

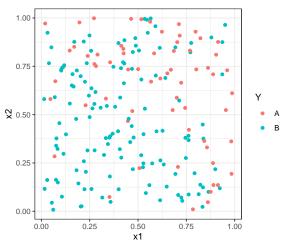
$$\ln \frac{p(X)}{1-p(X)} = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

- We need to estimate the parameters $\beta_0, \beta_1, \dots, \beta_p$ based on training data.
- We could use the Method of Least Squares, as we did with Linear Regression.

$$\beta = (X^T X)^{-1} X^T y$$

- But this won't necessarily produce accurate estimates, since residuals tend not to be approximately Normally distributed
- Instead, we use the method of Maximum Likelihood (ML)
 - We consider all possible values of \(\beta_0, \ldots, \beta_p\), and choose the ones for which the observed data \(x\) had highest probability of occurring.
 - I.e. we choose the model which is most consistent with the data.
 - How? Use numeric methods to optimize (and R)

Recall the simulation of 200 points from the model $p=\frac{x_1^2+x_2^2}{2}$:



Before we fit the model, we need to pay attention to the response variable: str(sim_data\$Y)

Factor w/ 2 levels "A", "B": 1 2 2 2 2 2 1 1 2 2 ...

```
str(sim_data$Y)
```

- ## Factor w/ 2 levels "A", "B": 1 2 2 2 2 2 1 1 2 2 ...
 - Logistic regression requires the response to either be binary numeric (0 or 1) or a binary factor

```
str(sim_data$Y)
```

- ## Factor w/ 2 levels "A", "B": 1 2 2 2 2 2 1 1 2 2 ...
 - Logistic regression requires the response to either be binary numeric (0 or 1) or a binary factor
 - The model will estimate the probability of the second level (i.e. P(Y = B))

```
str(sim_data$Y)
```

- ## Factor w/ 2 levels "A", "B": 1 2 2 2 2 2 1 1 2 2 ...
 - Logistic regression requires the response to either be binary numeric (0 or 1) or a binary factor
 - The model will estimate the probability of the second level (i.e. P(Y = B))
 - To change this, we can either recode the response as numeric:

```
sim_data$Y <- ifelse(sim_data$Y == "A", 1, 0)
head(sim_data$Y)</pre>
```

```
## [1] 1 0 0 0 0 0
```

```
str(sim_data\frac{\$}{Y})
```

- ## Factor w/ 2 levels "A", "B": 1 2 2 2 2 2 1 1 2 2 ...
 - Logistic regression requires the response to either be binary numeric (0 or 1) or a binary factor
 - The model will estimate the probability of the second level (i.e. P(Y = B))
 - To change this, we can either recode the response as numeric:

```
sim_data$Y <- ifelse(sim_data$Y == "A", 1, 0)
head(sim_data$Y)</pre>
```

- ## [1] 1 0 0 0 0 0
 - Or we can relevel the factor:

```
sim_data$Y <- factor(sim_data$Y, levels = c("B", "A"))
head(sim_data$Y)</pre>
```

```
## [1] A B B B B B B ## Levels: B A
```

We fit a logistic regression model using the ${\tt glm}$ function.

We fit a logistic regression model using the glm function.

```
sim_logistic <- glm(Y ~ x1 + x2, data = sim_data, family = "binomial")</pre>
```

We fit a logistic regression model using the glm function.

```
sim_logistic <- glm(Y ~ x1 + x2, data = sim_data, family = "binomial")</pre>
```

• We need to include family = "binomial" to tell R we want logistic regression

We fit a logistic regression model using the glm function.

```
sim_logistic <- glm(Y ~ x1 + x2, data = sim_data, family = "binomial")</pre>
```

- We need to include family = "binomial" to tell R we want logistic regression
- We can view the fitted model using summary, or just the coefficient estimates using \$coefficients

We fit a logistic regression model using the glm function.

```
sim_logistic <- glm(Y ~ x1 + x2, data = sim_data, family = "binomial")</pre>
```

- We need to include family = "binomial" to tell R we want logistic regression
- We can view the fitted model using summary, or just the coefficient estimates using \$coefficients

summary(sim_logistic)\$coefficients

```
## (Intercept) -3.472875 0.5685977 -6.107789 1.010206e-09
## x1 2.746111 0.6570948 4.179170 2.925746e-05
## x2 2.448198 0.5996131 4.082962 4.446520e-05
```

We fit a logistic regression model using the glm function.

```
sim_logistic <- glm(Y ~ x1 + x2, data = sim_data, family = "binomial")</pre>
```

- We need to include family = "binomial" to tell R we want logistic regression
- We can view the fitted model using summary, or just the coefficient estimates using \$coefficients

summary(sim logistic)\$coefficients

```
## (Intercept) -3.472875 0.5685977 -6.107789 1.010206e-09
## x1 2.746111 0.6570948 4.179170 2.925746e-05
## x2 2.448198 0.5996131 4.082962 4.446520e-05
```

• From the table, our logistic regression model is

$$\log \frac{p(X_1, X_2)}{1 + p(X_1, X_2)} = -3.47 + 2.75 \cdot X_1 + 2.45 \cdot X_2$$

To classify using logistic regression, we set a classification threshhold (usually 0.5) and predict Y = 1 if P(x) > 0.5.

To classify using logistic regression, we set a classification threshhold (usually 0.5) and predict Y = 1 if P(x) > 0.5.

• Note that if P(x) = 0.5, then odds are P(x)/(1 - P(x)) = 0.5/0.5 = 1, and the log odds are $\log(1) = 0$.

To classify using logistic regression, we set a classification threshhold (usually 0.5) and predict Y = 1 if P(x) > 0.5.

- Note that if P(x) = 0.5, then odds are P(x)/(1 P(x)) = 0.5/0.5 = 1, and the log odds are $\log(1) = 0$.
 - Thus, we classify Y = 1 if $\log \text{ odds} > 0$.

To classify using logistic regression, we set a classification threshhold (usually 0.5) and predict Y = 1 if P(x) > 0.5.

- Note that if P(x) = 0.5, then odds are P(x)/(1 P(x)) = 0.5/0.5 = 1, and the log odds are $\log(1) = 0$.
 - Thus, we classify Y = 1 if $\log \text{ odds} > 0$.
- Our fitted model predicting whether Y = A was

$$\log \frac{p(X_1, X_2)}{1 + p(X_1, X_2)} = -3.47 + 2.75 \cdot X_1 + 2.45 \cdot X_2$$

and so we classify Y = A if

$$0 < -3.47 + 2.75 \cdot X_1 + 2.45 \cdot X_2$$

or equivalently, if

$$X_2 > (3.47 - 2.75 \cdot X_1)/2.45$$

Decision Boundary

The logistic decision boundary is $X_2 = (3.47 - 2.75 \cdot X_1)/2.45$ (purple)

- We classify as A all points above this line, and classify as B all points below this line.
- The Bayes Classifier decision boundary shown in black

