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Boosting

Outline

• Discuss boosted trees as example of ensemble models
• Implement boosted trees in R

Prof Wells (STA 295: Stat Learning) Boosted Trees April 30th, 2024 2 / 16



Boosting

Section 1

Boosting
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Boosting

Motivation

Suppose you have a model which, given a binary classification dataset, always returned a
classifier with training error strictly lower than 50%.

• Can one use it to build a strong classifier that has error close to 0?
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Boosting

AdaBoost

In the 1990s, Shapire and Freund developed algorithms to do just that.

• Their algorithm (AdaBoost) generates a sequence of weak classifiers, where at each
iteration the algorithm finds the best classifier based on the current sample weights.

• Observations that are incorrectly classifed in the kth iteration recieve more weight in the
(k + 1)th iteration.

• The overall sequence of classifiers are combined into an ensemble which as high
chance of classifying more accurately than any individaul model in the list.

• The algorithm relies on using a sequence of weak learners (low variance, high bias)
• In the tree setting, we can create weak learners by restricting the depth of the tree.
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Boosting

AdaBoost Graphic
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Boosting

Boosting for regression

Boosting also works in the regression setting. The gradient boosting machine is a
boosting algorithm that works as follows:

1 Select tree depth D and number of iterations K .

2 Compute the average response ŷ and use this as the initial predicted value for each
observation

3 Compute the residual for each observation.

4 Fit a regression tree of depth D, using the residuals as the response.

5 Predict each observation using the regression tree from the previous step.

6 Update the predicted value of each observation by adding the previous iteration’s
predicted value to the predicted value generated in the previous step.

7 Repeat at total of K times.
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Boosting

Brief Example

We return to the pdxTrees data a final time.
Compute the mean:
mu <- mean(my_pdxTrees_train$Carbon_Sequestration_lb)
mu

## [1] 34.49668

Compute residuals:
my_pdxTrees_train_boost <- my_pdxTrees_train %>%

mutate(residuals1 = Carbon_Sequestration_lb - mu)

Fit a new tree
boost_tree_model<- rpart(residuals1 ~ Crown_Base_Height,

data = my_pdxTrees_train_boost,
control = rpart.control(maxdepth = 2))

Predict
predictions<- predict(boost_tree_model, data = my_pdxTrees_test)+mu

And so on. . .
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Boosting

Boosting Properties

Boosting is similar to random forests: the final prediction is sum of predictions from an
ensemble of models.

• But in Random Forests, all trees are created independently, are of maximum depth,
and contribute equally to the final model.

• In boosting, subsequent trees are are highly dependent on past trees, have minimal
depth, and contribute unequally.

Unlike random forests, boosting is susceptible to over-fitting (since it uses a greedy
algorithm to maximize gradient at each step).

• To remedy, we introduce a shrinkage penalty (like in Ridge Regression/LASSO)
• Instead of adding the full value for a sample to the previous iteration’s predicted value,

only a fraction of the current predicted value is added.
• This fraction is called the learning rate λ, with 0 < λ < 1. (Typical values range from

0.001 to 0.01)
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Boosting

Boosting in R

We use the gbm function in the gmb package to create Boosted Trees

• For regression problems, we use the argument distribution = "gaussian" and for
classification problems, we use distribution = "bernoulli"

• The argument n.trees controls the number of iterations
• The argument interaction.depth controls the depth of each tree
• The argument shrinkage controlls the learning rate λ

library(gbm)
set.seed(10101)
boosted_tree<-gbm(Carbon_Sequestration_lb ~., my_pdxTrees_train,

distribution = "gaussian",
n.trees=400,
interaction.depth = 3,
shrinkage = .1)
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Boosting

Summary Information
summary(boosted_tree )

## var rel.inf
## DBH DBH 44.0715885
## Functional_Type Functional_Type 18.0639257
## Crown_Width_NS Crown_Width_NS 15.1030328
## Crown_Width_EW Crown_Width_EW 13.5036280
## Condition Condition 3.9588168
## Tree_Height Tree_Height 3.2655545
## Crown_Base_Height Crown_Base_Height 1.5339425
## Mature_Size Mature_Size 0.4995112
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Boosting

Boosted Tree Performance

• How does the boosted tree do vs Random Forest? A pruned tree? A linear model?

results %>% group_by(model) %>% rmse(truth = obs, estimate = preds) %>% arrange(.estimate)

## # A tibble: 4 x 4
## model .metric .estimator .estimate
## <chr> <chr> <chr> <dbl>
## 1 random_forest rmse standard 10.8
## 2 boosted_tree rmse standard 11.5
## 3 pruned_tree rmse standard 13.7
## 4 linear_model rmse standard 17.7

• This behavior is typical. Boosted trees and Random Forests often have comparable
performance, and both tend to be more accurate than other model types

• However, this performance comes at significant cost of interpretability.

• Note that boosted trees have a number of important parameters: n.trees,
interaction.depth, shrinkage.

• How do we find the best values of these hyperparameters?
• Cross-validation!
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Boosting

Cross-Validating gbm

Warning! fitting a single gbm models can be time and computing intensive.
• Using cross-validation to compare multiple models can be VERY time and computing

intensive
• Cross-validation for gbm models is NOT RECOMMENDED if using the RStudio Server

• We can include an additional cross-validation term in our boosted tree model.
• It may be helpful to include a number of CPU cores as well. First verify your number of

available cores using parallel::decectCores()
library(gbm)
set.seed(10101)
cv_boosted_tree<-gbm(Carbon_Sequestration_lb ~., my_pdxTrees_train,

distribution = "gaussian",
n.trees=10000,
interaction.depth = 3,
shrinkage = .01,
cv.folds = 10,
n.cores = 8)
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Boosting

CV Results

• We can plot cross-validated performance using gbm.perf()
gbm.perf(cv_boosted_tree, method = "cv")
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## [1] 4290

• The green curve is the cross-validated error, while the black curve is the training error.

• The blue vertical line is the optimal value of the cross-validated error
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Boosting

Recording CV Error

• The gbm object also stores the values of the cross-validated errors for each number of
trees used, accessible via $cv.errors

my_errors <- cv_boosted_tree$cv.error
best_n <- which.min(cv_boosted_tree$cv.error)
data.frame(best_n, cv_error = my_errors[best_n])

## best_n cv_error
## 1 4290 93.01164

• This is particularly useful if we want to record the error for a model with certain
parameters
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Boosting

General Strategy for finding best Parameters

1 Choose a relatively high initial learning rate. A rate of 0.1 is a reasonable starting
point.

2 Determine the optimal number of trees for this learning rate using cross-validation.

3 Fix other tree-specific parameters and tune the learning rate, assessed by computation
speed and model accuracy.

4 Tune tree-specific parameters for fixed learning rate.

5 Once tree-specific parameters have been found, lower learning rate and increase
number of trees to assess improvements in accuracy.

Warning! This search can take considerable time (minutes to hours), depending on
computing power, number of variables in model, and number of observations. DO NOT
ATTEMPT ON RSTUDIO SERVER!!
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