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Outline

® |ntroduce the Bayes Classifier
® Implement KNN as a method of approximating the Bayes classifier

® Discuss methods of assessing classification models
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The Task
Suppose Y is categorical response variable with several levels A, ..., Ak, and that
Xi,..., X, are predictors (either categorical or quantitative).

® Suppose we want to predict which of 4 presidential candidates that a voter will select,
based on their age, race, gender and annual income.
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Suppose Y is categorical response variable with several levels A, ..., Ak, and that
Xi,..., X, are predictors (either categorical or quantitative).

® Suppose we want to predict which of 4 presidential candidates that a voter will select,
based on their age, race, gender and annual income.

Goal: Build a model g(Xi, ..., X,), which outputs a level Aq,...,A,, that can be used to
predict the class of Y based on Xi, ..., X,.
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The Task

Suppose Y is categorical response variable with several levels A, ..., Ak, and that
Xi,..., X, are predictors (either categorical or quantitative).

® Suppose we want to predict which of 4 presidential candidates that a voter will select,
based on their age, race, gender and annual income.

Goal: Build a model g(Xi, ..., X,), which outputs a level Aq,...,A,, that can be used to
predict the class of Y based on Xi, ..., X,.

® How do we measure accuracy of our model? RMSE is no longer appropriate (why?)

® Compute error rate (proportion of incorrect predictions) on training data:

n
Training Error = % Z l(y,- #* é(x,‘))

i=1

where I(y,- #* g(x,-)) equals 1 if y; # &(x;) and O otherwise.
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The Task
Suppose Y is categorical response variable with several levels A, ..., Ak, and that
Xi,..., X, are predictors (either categorical or quantitative).

® Suppose we want to predict which of 4 presidential candidates that a voter will select,
based on their age, race, gender and annual income.

Goal: Build a model g(Xi, ..., X,), which outputs a level Aq,...,A,, that can be used to
predict the class of Y based on Xi, ..., X,.

® How do we measure accuracy of our model? RMSE is no longer appropriate (why?)

® Compute error rate (proportion of incorrect predictions) on training data:
1 n
Training Error = - Z l(y,- #+ g(x,»))
i=1
where I(y,- #* g(x,-)) equals 1 if y; # &(x;) and O otherwise.
® Compute average error rate on test data
Test Error = Avg. I(y; #+ é(xo))

with the average taken across many test observations xg.
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The Best Possible Model

In general, the value of a response Y may depend on more than just the values of the
predictors Xi, ..., X, in a model. That is, the value of the response yp is random.
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The Best Possible Model

In general, the value of a response Y may depend on more than just the values of the
predictors Xi, ..., X, in a model. That is, the value of the response yp is random.

® The conditional probability of Event 1 given Event 2 is written P(Event 1|Event 2).
It is the probability that Event 1 occurs, given that we know Event 1 has occurred.
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In general, the value of a response Y may depend on more than just the values of the
predictors Xi, ..., X, in a model. That is, the value of the response yp is random.

® The conditional probability of Event 1 given Event 2 is written P(Event 1|Event 2).
It is the probability that Event 1 occurs, given that we know Event 1 has occurred.

® For example, P(Y = Aj|X = xg) is the conditional probability that an observation has
class Aj, given that it has predictor values xg.
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The Best Possible Model

In general, the value of a response Y may depend on more than just the values of the
predictors Xi, ..., X, in a model. That is, the value of the response yp is random.

® The conditional probability of Event 1 given Event 2 is written P(Event 1|Event 2).
It is the probability that Event 1 occurs, given that we know Event 1 has occurred.

® For example, P(Y = Aj|X = xg) is the conditional probability that an observation has
class Aj, given that it has predictor values xg.

® A reasonable model for predicting Y would be the one that assigns each observation
to the most likely class, given the values of its predictors.
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The Best Possible Model

In general, the value of a response Y may depend on more than just the values of the
predictors Xi, ..., X, in a model. That is, the value of the response yp is random.

® The conditional probability of Event 1 given Event 2 is written P(Event 1|Event 2).
It is the probability that Event 1 occurs, given that we know Event 1 has occurred.

® For example, P(Y = Aj|X = xg) is the conditional probability that an observation has
class Aj, given that it has predictor values xg.

® A reasonable model for predicting Y would be the one that assigns each observation
to the most likely class, given the values of its predictors.

® Suppose Y is binary with two levels: A; and A,. If we know that
P(Y = A1|X = xp) > 0.5, then we should predict A;. Otherwise, we predict A;.
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The Best Possible Model

In general, the value of a response Y may depend on more than just the values of the
predictors Xi, ..., X, in a model. That is, the value of the response yp is random.

® The conditional probability of Event 1 given Event 2 is written P(Event 1|Event 2).
It is the probability that Event 1 occurs, given that we know Event 1 has occurred.

® For example, P(Y = Aj|X = xg) is the conditional probability that an observation has
class Aj, given that it has predictor values xg.

® A reasonable model for predicting Y would be the one that assigns each observation
to the most likely class, given the values of its predictors.

® Suppose Y is binary with two levels: A; and A,. If we know that
P(Y = A1|X = xp) > 0.5, then we should predict A;. Otherwise, we predict A;.

® This model is called the Bayes Classifier and can be written as:

g(x0) = argmaxAjP(Y = A | X =x)

Prof Wells (STA 295: Stat Learning)

Classification April 2nd, 2024



Classification
00@0000000

The Best Possible Model

In general, the value of a response Y may depend on more than just the values of the
predictors Xi, ..., X, in a model. That is, the value of the response yp is random.

® The conditional probability of Event 1 given Event 2 is written P(Event 1|Event 2).
It is the probability that Event 1 occurs, given that we know Event 1 has occurred.

® For example, P(Y = Aj|X = xg) is the conditional probability that an observation has
class Aj, given that it has predictor values xg.

® A reasonable model for predicting Y would be the one that assigns each observation
to the most likely class, given the values of its predictors.

® Suppose Y is binary with two levels: A; and A,. If we know that
P(Y = A1|X = xp) > 0.5, then we should predict A;. Otherwise, we predict A;.

® This model is called the Bayes Classifier and can be written as:
g(x0) = argmaxAjP(Y = A | X =x)

® This model actually minimizes average test error rate among all possible models.
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The Best Possible Model

In general, the value of a response Y may depend on more than just the values of the
predictors Xi, ..., X, in a model. That is, the value of the response yp is random.

® The conditional probability of Event 1 given Event 2 is written P(Event 1|Event 2).
It is the probability that Event 1 occurs, given that we know Event 1 has occurred.

® For example, P(Y = Aj|X = xg) is the conditional probability that an observation has
class Aj, given that it has predictor values xg.

® A reasonable model for predicting Y would be the one that assigns each observation
to the most likely class, given the values of its predictors.

® Suppose Y is binary with two levels: A; and A,. If we know that
P(Y = A1|X = xp) > 0.5, then we should predict A;. Otherwise, we predict A;.

® This model is called the Bayes Classifier and can be written as:
g(x0) = argmaxAjP(Y = A | X =x)

® This model actually minimizes average test error rate among all possible models.

® In practice, we cannot build this optimal model, since we don’t know know the
formula for P(Y = Aj| X = x0). Instead, we will try to estimate it.
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Simulation

® Suppose Y takes values A or B, and X; and Xz are predictors taking values in [0, 1].
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Simulation

® Suppose Y takes values A or B, and X; and Xz are predictors taking values in [0, 1].
® Additionally, suppose that if X; = x1 and X2 = x, then Y = A with probability

p=(x+x)/2
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Simulation

® Suppose Y takes values A or B, and X; and Xz are predictors taking values in [0, 1].

® Additionally, suppose that if X; = x1 and X2 = x, then Y = A with probability
p =0 +x3)/2

Probability of Y = A
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Simulation

® Suppose Y takes values A or B, and X; and Xz are predictors taking values in [0, 1].

® Additionally, suppose that if X; = x1 and X2 = x, then Y = A with probability
p =0 +x3)/2

Probability of Y = A

1.00 1
What is the Bayes Classifier g in this
o7 p case?
- 1.00
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< 0.504 050
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O.Z)O O.l25 0 l50 O.l75 1 lOO
x1
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Simulation

® Suppose Y takes values A or B, and X; and Xz are predictors taking values in [0, 1].

® Additionally, suppose that if X; = x1 and X2 = x, then Y = A with probability
p =0 +x3)/2

Probability of Y = A

1.00 1
What is the Bayes Classifier g in this
78] p_ . case?
e
0.75
& 0501 o 8(x0) =argmax ,, P(Y = A;j| X =xp)
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x1
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Simulation

® Suppose Y takes values A or B, and X; and Xz are predictors taking values in [0, 1].

® Additionally, suppose that if X1 = x1 and X2 = x, then Y = A with probability
p=(x+x3)/2

Probability of Y = A

1.00 1
What is the Bayes Classifier g in this
78] p_ . case?
e
0.75
& 0501 () =argmax ,, P(Y = Aj| X = x)
.MS JA i+ xE > 1
0.25 0.00 - B, if X12 + X22 <1
0.004
O.Z)O O..25 0. l50 O..75 1. lOO
x1
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Simulate Data

Let's simulate 200 data points from this model.
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The Bayes Classifier

The purple arc represents the Bayes Classifier boundary
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The Bayes Classifier

Any test point outside the circle should be classified as A (red)
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The Bayes Classifier

Any test point inside the circle should be classified as B (blue)
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Expected Error Rate

In general, using the Bayes Classifier produces an expected error rate of

1— Avg. (maxP(Y =A|X= Xo))
j
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Expected Error Rate

In general, using the Bayes Classifier produces an expected error rate of

1— Avg. (maxP(Y =A|X= Xo))
j

® For our study, our Bayes Classifier has a theoretical error rate of % — 5 ~0.274.
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In general, using the Bayes Classifier produces an expected error rate of

1— Avg. (maxP(Y =A|X= Xo))
j

® For our study, our Bayes Classifier has a theoretical error rate of % — 5 ~0.274.

® Can verify using multivariate calculus or by sampling a large number of times.
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In general, using the Bayes Classifier produces an expected error rate of

1— Avg. (maxP(Y =A|X= Xo))
j

® For our study, our Bayes Classifier has a theoretical error rate of % — 5 ~0.274.
® Can verify using multivariate calculus or by sampling a large number of times.

® Why won't the Bayes Classifier give an error rate of 07
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Expected Error Rate

In general, using the Bayes Classifier produces an expected error rate of

1— Avg. (maxP(Y =A|X= Xo))
j

® For our study, our Bayes Classifier has a theoretical error rate of % — 5 ~0.274.

® Can verify using multivariate calculus or by sampling a large number of times.
® Why won't the Bayes Classifier give an error rate of 07
® The response Y is random and may depend on variables beyond the predictors used in

the model. Even if an observation has high probability of being in a class, it isn't
guaranteed to be in that class.
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Expected Error Rate

In general, using the Bayes Classifier produces an expected error rate of

1— Avg. (maxP(Y =A|X= Xo))
j

® For our study, our Bayes Classifier has a theoretical error rate of % — 5 ~0.274.

® Can verify using multivariate calculus or by sampling a large number of times.

® Why won't the Bayes Classifier give an error rate of 07

® The response Y is random and may depend on variables beyond the predictors used in
the model. Even if an observation has high probability of being in a class, it isn't
guaranteed to be in that class.

® This is the theoretical lower bound on average test error for this classification problem.
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Expected Error Rate

In general, using the Bayes Classifier produces an expected error rate of

1— Avg. (maxP(Y =A|X= Xo))
j

® For our study, our Bayes Classifier has a theoretical error rate of % — 5 ~0.274.
® Can verify using multivariate calculus or by sampling a large number of times.
® Why won't the Bayes Classifier give an error rate of 07

® The response Y is random and may depend on variables beyond the predictors used in
the model. Even if an observation has high probability of being in a class, it isn't
guaranteed to be in that class.

® This is the theoretical lower bound on average test error for this classification problem.

® This is analogous to the irreducible error in regression problems
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K-Nearest Neighbors
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From Bayes Classifier to KNN

In theory, the Bayes Classifier is our best model for classification.
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From Bayes Classifier to KNN

In theory, the Bayes Classifier is our best model for classification.

® |n practice, we don’t know the conditional probability of Y given X, and so cannot
build a Bayes Classifier model.
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® |n practice, we don’t know the conditional probability of Y given X, and so cannot
build a Bayes Classifier model.

® But given sufficient data, we can estimate the conditional probabilities
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From Bayes Classifier to KNN

In theory, the Bayes Classifier is our best model for classification.

® |n practice, we don’t know the conditional probability of Y given X, and so cannot
build a Bayes Classifier model.

® But given sufficient data, we can estimate the conditional probabilities

Given a positive integer K and a test observation xp, let Ny denote the K nearest training
observations to xo. Then our model for the conditional probability P(Y = A;|X = xo) is

P(Y = Aj| X = x) ~ KZI(y, A))

i€Ng

Prof Wells (STA 295: Stat Learning) Classification April 2nd, 2024



K-Nearest Neighbors
0@0000000000

From Bayes Classifier to KNN

In theory, the Bayes Classifier is our best model for classification.

® |n practice, we don’t know the conditional probability of Y given X, and so cannot
build a Bayes Classifier model.

® But given sufficient data, we can estimate the conditional probabilities

Given a positive integer K and a test observation xp, let Ny denote the K nearest training
observations to xo. Then our model for the conditional probability P(Y = A;|X = xo) is

P(Y = Aj| X = x) ~ KZI(y, A))
i€Ng
® Qur classifier model is

A 1
£(x) = argmaxy § 2 > (i = A)
ieNg
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From Bayes Classifier to KNN

In theory, the Bayes Classifier is our best model for classification.

® |n practice, we don’t know the conditional probability of Y given X, and so cannot
build a Bayes Classifier model.

® But given sufficient data, we can estimate the conditional probabilities

Given a positive integer K and a test observation xp, let Ny denote the K nearest training
observations to xo. Then our model for the conditional probability P(Y = A;|X = xo) is

P(Y = Aj| X = x) ~ KEN:/(y, A))
ieNg

® Qur classifier model is

A 1
£(x) = argmaxy § 2 > (i = A)
ieNg

® An alternative formulation is that g(xo) predicts the class with greatest frequency
among the K neighbors of xo.
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Classify xo for K = 1,2, 3,5, 10, 200.
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Classification Boundaries

Here are the classification boundaries for a variety of values of K.

Training Data and Bayes Classifier
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Here are the classification boundaries for a variety of values of K.
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Here are the classification boundaries for a variety of values of K.
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Here are the classification boundaries for a variety of values of K.
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Here are the classification boundaries for a variety of values of K.
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Error Rates

The graph below shows error rates for the training set, as well as a test set of 100 points.
Error Rates for KNN
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Section 3

Assessing Classification Models
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KNN Classification in R

® To create knn models in R, we use the kknn function from the kknn package.

® Previously, we used kknn to build regression models, but classification models are
possible as well
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KNN Classification in R

® To create knn models in R, we use the kknn function from the kknn package.

® Previously, we used kknn to build regression models, but classification models are
possible as well

® The output of kknn is a list with several components:
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KNN Classification in R

® To create knn models in R, we use the kknn function from the kknn package.

® Previously, we used kknn to build regression models, but classification models are
possible as well

® The output of kknn is a list with several components:
® fitted.values, a vector of predicted classes
® prob, a matrix of predicted class probabilities
® CL, a matrix of the classes of the k nearest neighbors

® D, a matrix of the distances from each point to the k nearest neighbors
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Code for KNN

As an example, we fit KNN with k = 30

Prof Wells (STA 295: Stat Lea ifi April 2nd, 2024



Assessing Classification Models
000000000000 000

Code for KNN

As an example, we fit KNN with k = 30

® |et's inspect the structure of the training and testing data:
glimpse(train_data)

## Rows: 200

## Columns: 3

## $ x1 <dbl> 0.50747820, 0.30676851, 0.42690767, 0.69310208, 0.08513597, 0.22543~
## $ x2 <dbl> 0.2230884, 0.5358950, 0.6625291, 0.8480705, 0.1491831, 0.6700994, O~
## $ Y <fct> A, B, B, B, B, B, A, A, B, B, A, A, A, B, B, B, B, B, B, B, B, A, B~
glimpse(test_data)

## Rows: 100
## Columns: 3
## $ x1 <dbl> 0.89760792, 0.71213586, 0.32742617, 0.76785585, 0.68311176, 0.37160~
## $ x2 <dbl> 0.72979928, 0.60380908, 0.87182280, 0.34015532, 0.63769834, 0.33938~
## $ Y <fct> A, A, B, B, B, B, B, B, A, B, B, B, B, B, B, A, B, B, A, A, B, B, A~
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Code for KNN

As an example, we fit KNN with k = 30

® |et's inspect the structure of the training and testing data:
glimpse(train_data)

## Rows: 200

## Columns: 3

## $ x1 <dbl> 0.50747820, 0.30676851, 0.42690767, 0.69310208, 0.08513597, 0.22543~
## $ x2 <dbl> 0.2230884, 0.5358950, 0.6625291, 0.8480705, 0.1491831, 0.6700994, O~
## $ Y <fct> A, B, B, B, B, B, A, A, B, B, A, A, A, B, B, B, B, B, B, B, B, A, B~
glimpse(test_data)

## Rows: 100

## Columns: 3

## $ x1 <dbl> 0.89760792, 0.71213586, 0.32742617, 0.76785585, 0.68311176, 0.37160~
## $ x2 <dbl> 0.72979928, 0.60380908, 0.87182280, 0.34015532, 0.63769834, 0.33938~
## $ Y <fct> A, A, B, B, B, B, B, B, A, B, B, B, B, B, B, A, B, B, A, A, B, B, A~

® Now we build the knn object:
library (kknn)
sim_fit_30 <- kknn(Y ~ x1 + x2, train = train_data, test = test_data,
k = 30, kernel = ”rectangular”)
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Code for KNN

Let's look at the fitted.values
head(sim_fit_30$fitted.values)

## [1] AABBAB
## Levels: A B
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Code for KNN

Let's look at the fitted.values
head(sim_fit_30$fitted.values)

## [1] AABBAB
## Levels: A B

® And the matrix of class probabilities
head(sim_fit_30$prob)

## A B
## [1,] 0.6666667 0.3333333
## [2,] 0.5333333 0.4666667
## [3,] 0.4666667 0.5333333
## [4,] 0.3333333 0.6666667
## [5,] 0.5666667 0.4333333
## [6,]1 0.1000000 0.9000000
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Code for KNN

Let's look at the fitted.values
head(sim_fit_30$fitted.values)

## [1] AABBAB
## Levels: A B

® And the matrix of class probabilities
head(sim_fit_30$prob)

## A B
## [1,] 0.6666667 0.3333333
## [2,] 0.5333333 0.4666667
## [3,] 0.4666667 0.5333333
## [4,] 0.3333333 0.6666667
## [5,] 0.5666667 0.4333333
## [6,]1 0.1000000 0.9000000

® Create a new data frame containing the true response values, the predicted response
values, and the class probabilities

sim_results <- data.frame(obs = test_data$y,
preds = sim_fit_30$fitted.values,
probs = sim_fit_30$prob)

Prof Wells (STA 295: Stat Learning) Classification April 2nd, 2024



Assessing Classification Models
000080000000 000

Confusion Matrix

The yardstick package contain several functions for measuring model performance.
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Confusion Matrix

The yardstick package contain several functions for measuring model performance.

® A confusion matrix is a two-way table comparing the model predictions to true
response values
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Confusion Matrix

The yardstick package contain several functions for measuring model performance.

® A confusion matrix is a two-way table comparing the model predictions to true
response values

® We create the confusion matrix using conf_mat from yardstick
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Confusion Matrix

The yardstick package contain several functions for measuring model performance.

® A confusion matrix is a two-way table comparing the model predictions to true
response values

® We create the confusion matrix using conf_mat from yardstick
library(yardstick)
conf_mat(sim_results, truth = obs, estimate = preds)

## Truth
## Prediction A B
## A14 7
## B 28 51
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Confusion Matrix

The yardstick package contain several functions for measuring model performance.

® A confusion matrix is a two-way table comparing the model predictions to true
response values

® We create the confusion matrix using conf_mat from yardstick
library(yardstick)
conf_mat(sim_results, truth = obs, estimate = preds)

## Truth
## Prediction A B
## A14 7
## B 28 51

® Correct predictions are represented along the diagonal of the confusion matrix
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Confusion Matrix

The yardstick package contain several functions for measuring model performance.

® A confusion matrix is a two-way table comparing the model predictions to true
response values

® We create the confusion matrix using conf_mat from yardstick
library(yardstick)
conf_mat(sim_results, truth = obs, estimate = preds)

## Truth
## Prediction A B
## A14 7
## B 28 51

® Correct predictions are represented along the diagonal of the confusion matrix

® A model’s accuracy is its proportion of correct guesses.
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Confusion Matrix

The yardstick package contain several functions for measuring model performance.

® A confusion matrix is a two-way table comparing the model predictions to true
response values

® We create the confusion matrix using conf_mat from yardstick
library(yardstick)
conf_mat(sim_results, truth = obs, estimate = preds)

## Truth
## Prediction A B
## A14 7
## B 28 51

® Correct predictions are represented along the diagonal of the confusion matrix

® A model’s accuracy is its proportion of correct guesses.

® There were 14 + 51 = 65 correct guesses, out of 100 attempts, for an accuracy of 0.65.
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Error Rate

® Instead of computing by hand, we can use yardstick's accuracy function.
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Error Rate

® Instead of computing by hand, we can use yardstick's accuracy function.
accuracy(sim_results, truth = obs, estimate = preds)

## # A tibble: 1 x 3

## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 accuracy binary 0.65

Prof Wells (STA 295: Stat Leal ifi April 2nd, 2024



Assessing Classification Models
00000@000000000

Error Rate

® Instead of computing by hand, we can use yardstick's accuracy function.
accuracy(sim_results, truth = obs, estimate = preds)

## # A tibble: 1 x 3

## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 accuracy binary 0.65

® The Error Rate of a model is the proportion of incorrect guesses. Note that every
guess is either correct or incorrect, so

error + accuracy =1 == error = 1 — accuracy
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Error Rate

® Instead of computing by hand, we can use yardstick's accuracy function.
accuracy(sim_results, truth = obs, estimate = preds)

## # A tibble: 1 x 3

## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 accuracy binary 0.65

® The Error Rate of a model is the proportion of incorrect guesses. Note that every
guess is either correct or incorrect, so

error + accuracy =1 == error = 1 — accuracy

® There is no yardstick function for error, but we can compute it by pulling the
estimate value from the accuracy data frame, and subtracting from 1:
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Error Rate

® Instead of computing by hand, we can use yardstick's accuracy function.
accuracy(sim_results, truth = obs, estimate = preds)

## # A tibble: 1 x 3

## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 accuracy binary 0.65

® The Error Rate of a model is the proportion of incorrect guesses. Note that every
guess is either correct or incorrect, so

error + accuracy =1 == error = 1 — accuracy

® There is no yardstick function for error, but we can compute it by pulling the

estimate value from the accuracy data frame, and subtracting from 1:

acc <- accuracy(sim_results, truth = obs, estimate = preds) %>}, pull(.estimate)
error <- 1 - acc
error

## [1] 0.35
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Sensitivity and Specificity

Sensitivity: Proportion of true positives correctly predicted
® Type Il Error rate: 1 — Sensitivity (false negatives)
Specificity: Proportion of true negatives correctly predicted

® Type | Error rate: 1 — Specificity (false positives)
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Sensitivity and Specificity

Sensitivity: Proportion of true positives correctly predicted
® Type Il Error rate: 1 — Sensitivity (false negatives)

Specificity: Proportion of true negatives correctly predicted
® Type | Error rate: 1 — Specificity (false positives)

Usually, we predict class A if P(Y = A|X = x0) > 0.5. But we could change our cut-off
from 0.5 to another proportion.
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Sensitivity and Specificity

Sensitivity: Proportion of true positives correctly predicted
® Type Il Error rate: 1 — Sensitivity (false negatives)

Specificity: Proportion of true negatives correctly predicted
® Type | Error rate: 1 — Specificity (false positives)

Usually, we predict class A if P(Y = A|X = x0) > 0.5. But we could change our cut-off
from 0.5 to another proportion.

® For example, we could instead use predict A if P(Y = A|[X = x) > 0.1
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Sensitivity and Specificity

Sensitivity: Proportion of true positives correctly predicted
® Type Il Error rate: 1 — Sensitivity (false negatives)

Specificity: Proportion of true negatives correctly predicted
® Type | Error rate: 1 — Specificity (false positives)

Usually, we predict class A if P(Y = A|X = x0) > 0.5. But we could change our cut-off
from 0.5 to another proportion.

® For example, we could instead use predict A if P(Y = A|[X = x) > 0.1

® By doing so, we can increase sensitivity to the detriment of specificity (or vice versa).
But the tradeoff is non-linear
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Sensitivity and Specificity

Sensitivity: Proportion of true positives correctly predicted
® Type Il Error rate: 1 — Sensitivity (false negatives)

Specificity: Proportion of true negatives correctly predicted
® Type | Error rate: 1 — Specificity (false positives)

Usually, we predict class A if P(Y = A|X = x0) > 0.5. But we could change our cut-off
from 0.5 to another proportion.

® For example, we could instead use predict A if P(Y = A|[X = x) > 0.1

® By doing so, we can increase sensitivity to the detriment of specificity (or vice versa).
But the tradeoff is non-linear

® Decreasing specificity by 0.1 may increase sensitivity by 0.15 when specificity is 0.6, but
may only increase sensitivity by 0.05 when specificity is 0.3.
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Sensitivity and Specificity

Sensitivity: Proportion of true positives correctly predicted
® Type Il Error rate: 1 — Sensitivity (false negatives)

Specificity: Proportion of true negatives correctly predicted
® Type | Error rate: 1 — Specificity (false positives)

Usually, we predict class A if P(Y = A|X = x0) > 0.5. But we could change our cut-off
from 0.5 to another proportion.

® For example, we could instead use predict A if P(Y = A|[X = x) > 0.1

® By doing so, we can increase sensitivity to the detriment of specificity (or vice versa).
But the tradeoff is non-linear

® Decreasing specificity by 0.1 may increase sensitivity by 0.15 when specificity is 0.6, but
may only increase sensitivity by 0.05 when specificity is 0.3.

® When might we want high specificity? High sensitivity?
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Sensitivity and Specificity

Sensitivity: Proportion of true positives correctly predicted
® Type Il Error rate: 1 — Sensitivity (false negatives)

Specificity: Proportion of true negatives correctly predicted
® Type | Error rate: 1 — Specificity (false positives)

Usually, we predict class A if P(Y = A|X = x0) > 0.5. But we could change our cut-off
from 0.5 to another proportion.

® For example, we could instead use predict A if P(Y = A|[X = x) > 0.1

® By doing so, we can increase sensitivity to the detriment of specificity (or vice versa).
But the tradeoff is non-linear

® Decreasing specificity by 0.1 may increase sensitivity by 0.15 when specificity is 0.6, but
may only increase sensitivity by 0.05 when specificity is 0.3.

When might we want high specificity? High sensitivity?

® What are the ramifications of changing the classification cutoff?
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Decision Boundary

Changing the cutoff corresponds to changing our decision boundary:

Cutoff = 0.5
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0.75-
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X 0.50+
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Decision Boundary

Changing the cutoff corresponds to changing our decision boundary:

Cutoff = 0.1
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ROC Curves

A Receiver Operating Characteristic (ROC) curve is a plot of sensitivity vs. type | error
rate, based on classification probabilities.
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ROC Curves

A Receiver Operating Characteristic (ROC) curve is a plot of sensitivity vs. type | error
rate, based on classification probabilities.

ROC
1.00
075
2
2
5 0.50
2
5
a
0.25
0.00
0.00 0.25 075 1.00

050
1 - Specificity

® What does the ROC curve look like for a perfectly accurate model?
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ROC Curves

A Receiver Operating Characteristic (ROC) curve is a plot of sensitivity vs. type | error
rate, based on classification probabilities.
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® What does the ROC curve look like for a perfectly accurate model?
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ROC Curves

A Receiver Operating Characteristic (ROC) curve is a plot of sensitivity vs. type | error
rate, based on classification probabilities.
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® What does the ROC curve look like for a model that just randomly guesses?
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ROC Curves

A Receiver Operating Characteristic (ROC) curve is a plot of sensitivity vs. type | error
rate, based on classification probabilities.
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® What does the ROC curve look like for a model that just randomly guesses?
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® The area under the ROC curve (AUC) is a method for assessing how well a model
performs:

® The perfect model has AUC of 1, while the random guessing model has AUC of 0.5.
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® The area under the ROC curve (AUC) is a method for assessing how well a model
performs:

® The perfect model has AUC of 1, while the random guessing model has AUC of 0.5.

® Models with higher AUC (closer to 1) are better than models with lower AUC (closer
to 0.5)
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® The area under the ROC curve (AUC) is a method for assessing how well a model
performs:

® The perfect model has AUC of 1, while the random guessing model has AUC of 0.5.

® Models with higher AUC (closer to 1) are better than models with lower AUC (closer
to 0.5)

® The roc_auc function in yardstick will compute the area under the ROC curve
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® The area under the ROC curve (AUC) is a method for assessing how well a model
performs:

® The perfect model has AUC of 1, while the random guessing model has AUC of 0.5.

® Models with higher AUC (closer to 1) are better than models with lower AUC (closer
to 0.5)

® The roc_auc function in yardstick will compute the area under the ROC curve
roc_auc(sim_results, truth = obs, probs.A)

## # A tibble: 1 x 3

## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 roc_auc binary 0.750
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® The area under the ROC curve (AUC) is a method for assessing how well a model
performs:

® The perfect model has AUC of 1, while the random guessing model has AUC of 0.5.

® Models with higher AUC (closer to 1) are better than models with lower AUC (closer
to 0.5)

® The roc_auc function in yardstick will compute the area under the ROC curve
roc_auc(sim_results, truth = obs, probs.A)

## # A tibble: 1 x 3

## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 roc_auc binary 0.750

® Here, probs.A is the column name for the column containing the estimated
probabilities each observation is of class A.
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Creating ROC Curves

The roc_curve function in yardstick will create an ROC curve:
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Creating ROC Curves

The roc_curve function in yardstick will create an ROC curve:
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