
Random Forests Bagging and Random Forests in R Boosting

Random Forests and Boosted Trees

Prof Wells

STA 295: Stat Learning

April 23rd, 2024

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 1 / 33

Random Forests Bagging and Random Forests in R Boosting

Outline

• Discuss random forests and boosted trees as methods for reducing variance in decision
trees

• Implement random forests and boosted trees in R

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 2 / 33

Random Forests Bagging and Random Forests in R Boosting

Section 1

Random Forests

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 3 / 33

Random Forests Bagging and Random Forests in R Boosting

Review: Bagging

• To create a bagged model, first create many bootstrap samples from the original
training set (i.e. sample with replacement to create a sample of same size as original)

• Then fit a decision tree to each bootstrap sample. Average the resulting predictions to
get the bagged prediction.

• Unlike a single tree model, we do not prune trees in bagged models.

• Single (full) decision trees tend to have high variance but low bias. While single
(pruned) decision trees tend to have lower variance but higher bias.

• However, in bagged trees, since we average large number of (full) decision trees, we
reduce variance

• Additionally, averaging models with low bias will produce a model with low bias

• This a a rare case in stat learning in which there is no bias-variance trade-off. Bagged
trees allow us to reduce variance with no increase in bias!

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 4 / 33

Random Forests Bagging and Random Forests in R Boosting

Review: Bagging

• To create a bagged model, first create many bootstrap samples from the original
training set (i.e. sample with replacement to create a sample of same size as original)

• Then fit a decision tree to each bootstrap sample. Average the resulting predictions to
get the bagged prediction.

• Unlike a single tree model, we do not prune trees in bagged models.

• Single (full) decision trees tend to have high variance but low bias. While single
(pruned) decision trees tend to have lower variance but higher bias.

• However, in bagged trees, since we average large number of (full) decision trees, we
reduce variance

• Additionally, averaging models with low bias will produce a model with low bias

• This a a rare case in stat learning in which there is no bias-variance trade-off. Bagged
trees allow us to reduce variance with no increase in bias!

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 4 / 33

Random Forests Bagging and Random Forests in R Boosting

Review: Bagging

• To create a bagged model, first create many bootstrap samples from the original
training set (i.e. sample with replacement to create a sample of same size as original)

• Then fit a decision tree to each bootstrap sample. Average the resulting predictions to
get the bagged prediction.

• Unlike a single tree model, we do not prune trees in bagged models.

• Single (full) decision trees tend to have high variance but low bias. While single
(pruned) decision trees tend to have lower variance but higher bias.

• However, in bagged trees, since we average large number of (full) decision trees, we
reduce variance

• Additionally, averaging models with low bias will produce a model with low bias

• This a a rare case in stat learning in which there is no bias-variance trade-off. Bagged
trees allow us to reduce variance with no increase in bias!

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 4 / 33

Random Forests Bagging and Random Forests in R Boosting

Review: Bagging

• To create a bagged model, first create many bootstrap samples from the original
training set (i.e. sample with replacement to create a sample of same size as original)

• Then fit a decision tree to each bootstrap sample. Average the resulting predictions to
get the bagged prediction.

• Unlike a single tree model, we do not prune trees in bagged models.

• Single (full) decision trees tend to have high variance but low bias. While single
(pruned) decision trees tend to have lower variance but higher bias.

• However, in bagged trees, since we average large number of (full) decision trees, we
reduce variance

• Additionally, averaging models with low bias will produce a model with low bias

• This a a rare case in stat learning in which there is no bias-variance trade-off. Bagged
trees allow us to reduce variance with no increase in bias!

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 4 / 33

Random Forests Bagging and Random Forests in R Boosting

Further Performance Improvements

Suppose we have m ensemble models built from the same data set and that it turns out
that all m models are very similar.

• Do we expect the ensemble model to have high or low variance?
• High variance (since the models are very correlated)

• When bagging trees, if one predictor accounts for large amount of deviation in the
response, it will usually be selected as the first split (regardless of the bootstrap
sample used)

• To artificially increase the variety among trees, we randomly restrict which predictors
can be used at each split point.

• Although counterintuitive, this restriction tends to increase accuracy of the ensemble
by breaking correlations among the participant trees

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 5 / 33

Random Forests Bagging and Random Forests in R Boosting

Further Performance Improvements

Suppose we have m ensemble models built from the same data set and that it turns out
that all m models are very similar.

• Do we expect the ensemble model to have high or low variance?

• High variance (since the models are very correlated)

• When bagging trees, if one predictor accounts for large amount of deviation in the
response, it will usually be selected as the first split (regardless of the bootstrap
sample used)

• To artificially increase the variety among trees, we randomly restrict which predictors
can be used at each split point.

• Although counterintuitive, this restriction tends to increase accuracy of the ensemble
by breaking correlations among the participant trees

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 5 / 33

Random Forests Bagging and Random Forests in R Boosting

Further Performance Improvements

Suppose we have m ensemble models built from the same data set and that it turns out
that all m models are very similar.

• Do we expect the ensemble model to have high or low variance?
• High variance (since the models are very correlated)

• When bagging trees, if one predictor accounts for large amount of deviation in the
response, it will usually be selected as the first split (regardless of the bootstrap
sample used)

• To artificially increase the variety among trees, we randomly restrict which predictors
can be used at each split point.

• Although counterintuitive, this restriction tends to increase accuracy of the ensemble
by breaking correlations among the participant trees

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 5 / 33

Random Forests Bagging and Random Forests in R Boosting

Further Performance Improvements

Suppose we have m ensemble models built from the same data set and that it turns out
that all m models are very similar.

• Do we expect the ensemble model to have high or low variance?
• High variance (since the models are very correlated)

• When bagging trees, if one predictor accounts for large amount of deviation in the
response, it will usually be selected as the first split (regardless of the bootstrap
sample used)

• To artificially increase the variety among trees, we randomly restrict which predictors
can be used at each split point.

• Although counterintuitive, this restriction tends to increase accuracy of the ensemble
by breaking correlations among the participant trees

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 5 / 33

Random Forests Bagging and Random Forests in R Boosting

Further Performance Improvements

Suppose we have m ensemble models built from the same data set and that it turns out
that all m models are very similar.

• Do we expect the ensemble model to have high or low variance?
• High variance (since the models are very correlated)

• When bagging trees, if one predictor accounts for large amount of deviation in the
response, it will usually be selected as the first split (regardless of the bootstrap
sample used)

• To artificially increase the variety among trees, we randomly restrict which predictors
can be used at each split point.

• Although counterintuitive, this restriction tends to increase accuracy of the ensemble
by breaking correlations among the participant trees

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 5 / 33

Random Forests Bagging and Random Forests in R Boosting

Further Performance Improvements

Suppose we have m ensemble models built from the same data set and that it turns out
that all m models are very similar.

• Do we expect the ensemble model to have high or low variance?
• High variance (since the models are very correlated)

• When bagging trees, if one predictor accounts for large amount of deviation in the
response, it will usually be selected as the first split (regardless of the bootstrap
sample used)

• To artificially increase the variety among trees, we randomly restrict which predictors
can be used at each split point.

• Although counterintuitive, this restriction tends to increase accuracy of the ensemble
by breaking correlations among the participant trees

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 5 / 33

Random Forests Bagging and Random Forests in R Boosting

Random Forests

To create a random forest:

1 Select the number of models m to build and a number of predictors k to use at each
step t

2 Generate a bootstrap sample for each model

3 Build a tree on the bootstrap sample where at each step, a random selection of k of
the p predictors can be used (independent of prior predictors selected)

4 Aggregate the models to create an ensemble model.

Advantages of the random forest?
• Individual models are less correlated, so ensemble has lower variance
• Each tree is quicker to build (why?)

Disadvantages?
• Difficult to interpret
• Theoretically properties less well-studied (possible MAP project!)

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 6 / 33

Random Forests Bagging and Random Forests in R Boosting

Random Forests

To create a random forest:

1 Select the number of models m to build and a number of predictors k to use at each
step t

2 Generate a bootstrap sample for each model

3 Build a tree on the bootstrap sample where at each step, a random selection of k of
the p predictors can be used (independent of prior predictors selected)

4 Aggregate the models to create an ensemble model.

Advantages of the random forest?

• Individual models are less correlated, so ensemble has lower variance
• Each tree is quicker to build (why?)

Disadvantages?
• Difficult to interpret
• Theoretically properties less well-studied (possible MAP project!)

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 6 / 33

Random Forests Bagging and Random Forests in R Boosting

Random Forests

To create a random forest:

1 Select the number of models m to build and a number of predictors k to use at each
step t

2 Generate a bootstrap sample for each model

3 Build a tree on the bootstrap sample where at each step, a random selection of k of
the p predictors can be used (independent of prior predictors selected)

4 Aggregate the models to create an ensemble model.

Advantages of the random forest?
• Individual models are less correlated, so ensemble has lower variance
• Each tree is quicker to build (why?)

Disadvantages?
• Difficult to interpret
• Theoretically properties less well-studied (possible MAP project!)

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 6 / 33

Random Forests Bagging and Random Forests in R Boosting

Random Forests

To create a random forest:

1 Select the number of models m to build and a number of predictors k to use at each
step t

2 Generate a bootstrap sample for each model

3 Build a tree on the bootstrap sample where at each step, a random selection of k of
the p predictors can be used (independent of prior predictors selected)

4 Aggregate the models to create an ensemble model.

Advantages of the random forest?
• Individual models are less correlated, so ensemble has lower variance
• Each tree is quicker to build (why?)

Disadvantages?

• Difficult to interpret
• Theoretically properties less well-studied (possible MAP project!)

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 6 / 33

Random Forests Bagging and Random Forests in R Boosting

Random Forests

To create a random forest:

1 Select the number of models m to build and a number of predictors k to use at each
step t

2 Generate a bootstrap sample for each model

3 Build a tree on the bootstrap sample where at each step, a random selection of k of
the p predictors can be used (independent of prior predictors selected)

4 Aggregate the models to create an ensemble model.

Advantages of the random forest?
• Individual models are less correlated, so ensemble has lower variance
• Each tree is quicker to build (why?)

Disadvantages?
• Difficult to interpret
• Theoretically properties less well-studied (possible MAP project!)

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 6 / 33

Random Forests Bagging and Random Forests in R Boosting

Hand-made Random Forests

I have a data set of 50 observations on a binary response Y and 3 quantitative predictors.
• Our goal is to build, as a class, a random forest for predicting Y .
• Each table will be tasked with building (by hand) a single decision tree for predicting

Y .
• Each table will be randomly assigned 2 of the 3 predictors, and will have a bootstrap

sample of the 50 observations.
• Each table will be given a scatterplot showing the relationship between their 2

predictors and the response, on their bootstrap sample.
• Each table should work together to decide where to make cuts in the scatterplot to

create a decision tree with between 3 and 6 leaves (group’s choice)
• I will give each group the same 10 test points to classify. And as a class, we will

average the predictions to create a random forest prediction.

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 7 / 33

Random Forests Bagging and Random Forests in R Boosting

Section 2

Bagging and Random Forests in R

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 8 / 33

Random Forests Bagging and Random Forests in R Boosting

A Forest of Trees

We return to the pdxTrees data set, this time expanding both our data set size and
number of predictors:
names(my_pdxTrees)

[1] "DBH" "Condition"
[3] "Tree_Height" "Crown_Width_NS"
[5] "Crown_Width_EW" "Crown_Base_Height"
[7] "Functional_Type" "Mature_Size"
[9] "Carbon_Sequestration_lb"
dim(my_pdxTrees)

[1] 3015 9
set.seed(1)
library(rsample)
my_pdxTrees_split <- initial_split(my_pdxTrees)
my_pdxTrees_train <- training(my_pdxTrees_split)
my_pdxTrees_test <- testing(my_pdxTrees_split)

library(GGally)
ggpairs(my_pdxTrees_train)

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 9 / 33

Random Forests Bagging and Random Forests in R Boosting

Exploratory Analysis

Corr:

0.772***

Corr:

0.766***

Corr:
0.530***

Corr:

0.819***

Corr:
0.507***

Corr:

0.872***

Corr:

0.227*

Corr:
0.616***

Corr:

0.066

Corr:

0.037

Corr:

0.614***

Corr:
0.398***

Corr:

0.625***

Corr:

0.683***

Corr:
0.025

DBH Condition Tree_Height Crown_Width_NS Crown_Width_EW Crown_Base_Height Functional_Type Mature_Size Carbon_Sequestration_lb

D
B

H
C

ondition
Tree_H

eightC
row

n_W
idth_N

S
C

row
n_W

idth_E
W

C
row

n_B
ase_H

eight
F

unctional_TypeM
ature_S

ize
C

arbon_S
equestration_lb

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 10 / 33

Random Forests Bagging and Random Forests in R Boosting

Random Forest in R

• To create both bagged trees and random forests, we use the randomForest function
in the randomForest package in R:

library(randomForest)
rfmodel <- randomForest(Carbon_Sequestration_lb ~ ., data = my_pdxTrees_train)
rfmodel

##
Call:
randomForest(formula = Carbon_Sequestration_lb ~ ., data = my_pdxTrees_train)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 2
##
Mean of squared residuals: 111.5371
% Var explained: 85.84

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 11 / 33

Random Forests Bagging and Random Forests in R Boosting

Modifications

We can control how many trees are generated with ntree and the number of predictors at
each split with mtry

• By default, randomForest uses p/3 predictors for regression and √p predictors for
classification

set.seed(1)
rfmodel2 <- randomForest(Carbon_Sequestration_lb ~ ., data = my_pdxTrees_train,

ntree = 10, mtry = 5)
rfmodel2

##
Call:
randomForest(formula = Carbon_Sequestration_lb ~ ., data = my_pdxTrees_train, ntree = 10, mtry = 5)
Type of random forest: regression
Number of trees: 10
No. of variables tried at each split: 5
##
Mean of squared residuals: 106.4475
% Var explained: 86.48

How can we create a bagged model using the randomForest function?
• Set mtry= p, where p is the total number predictors available

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 12 / 33

Random Forests Bagging and Random Forests in R Boosting

Modifications

We can control how many trees are generated with ntree and the number of predictors at
each split with mtry

• By default, randomForest uses p/3 predictors for regression and √p predictors for
classification

set.seed(1)
rfmodel2 <- randomForest(Carbon_Sequestration_lb ~ ., data = my_pdxTrees_train,

ntree = 10, mtry = 5)
rfmodel2

##
Call:
randomForest(formula = Carbon_Sequestration_lb ~ ., data = my_pdxTrees_train, ntree = 10, mtry = 5)
Type of random forest: regression
Number of trees: 10
No. of variables tried at each split: 5
##
Mean of squared residuals: 106.4475
% Var explained: 86.48

How can we create a bagged model using the randomForest function?
• Set mtry= p, where p is the total number predictors available

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 12 / 33

Random Forests Bagging and Random Forests in R Boosting

Modifications

We can control how many trees are generated with ntree and the number of predictors at
each split with mtry

• By default, randomForest uses p/3 predictors for regression and √p predictors for
classification

set.seed(1)
rfmodel2 <- randomForest(Carbon_Sequestration_lb ~ ., data = my_pdxTrees_train,

ntree = 10, mtry = 5)
rfmodel2

##
Call:
randomForest(formula = Carbon_Sequestration_lb ~ ., data = my_pdxTrees_train, ntree = 10, mtry = 5)
Type of random forest: regression
Number of trees: 10
No. of variables tried at each split: 5
##
Mean of squared residuals: 106.4475
% Var explained: 86.48

How can we create a bagged model using the randomForest function?
• Set mtry= p, where p is the total number predictors available

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 12 / 33

Random Forests Bagging and Random Forests in R Boosting

Modifications

We can control how many trees are generated with ntree and the number of predictors at
each split with mtry

• By default, randomForest uses p/3 predictors for regression and √p predictors for
classification

set.seed(1)
rfmodel2 <- randomForest(Carbon_Sequestration_lb ~ ., data = my_pdxTrees_train,

ntree = 10, mtry = 5)
rfmodel2

##
Call:
randomForest(formula = Carbon_Sequestration_lb ~ ., data = my_pdxTrees_train, ntree = 10, mtry = 5)
Type of random forest: regression
Number of trees: 10
No. of variables tried at each split: 5
##
Mean of squared residuals: 106.4475
% Var explained: 86.48

How can we create a bagged model using the randomForest function?

• Set mtry= p, where p is the total number predictors available

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 12 / 33

Random Forests Bagging and Random Forests in R Boosting

Modifications

We can control how many trees are generated with ntree and the number of predictors at
each split with mtry

• By default, randomForest uses p/3 predictors for regression and √p predictors for
classification

set.seed(1)
rfmodel2 <- randomForest(Carbon_Sequestration_lb ~ ., data = my_pdxTrees_train,

ntree = 10, mtry = 5)
rfmodel2

##
Call:
randomForest(formula = Carbon_Sequestration_lb ~ ., data = my_pdxTrees_train, ntree = 10, mtry = 5)
Type of random forest: regression
Number of trees: 10
No. of variables tried at each split: 5
##
Mean of squared residuals: 106.4475
% Var explained: 86.48

How can we create a bagged model using the randomForest function?
• Set mtry= p, where p is the total number predictors available

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 12 / 33

Random Forests Bagging and Random Forests in R Boosting

Making predictions

• So you have your randomForest model. How do you make predictions?
my_preds<- predict(rfmodel, my_pdxTrees_test)
results <- data.frame(obs = my_pdxTrees_test$Carbon_Sequestration_lb, preds = my_preds)

results %>% head()

obs preds
1 39.0 38.26301
2 110.2 66.90372
3 61.2 76.66064
4 34.0 33.92686
5 75.4 52.68092
6 96.1 83.09862

Let’s compute test rMSE
library(yardstick)
results %>% rmse(truth = obs, estimate = preds)

A tibble: 1 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>
1 rmse standard 11.3

• For reference, the bagged model had rMSE of 12.3, while the average rMSE for single
trees was 13.9

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 13 / 33

Random Forests Bagging and Random Forests in R Boosting

Making predictions

• So you have your randomForest model. How do you make predictions?
my_preds<- predict(rfmodel, my_pdxTrees_test)
results <- data.frame(obs = my_pdxTrees_test$Carbon_Sequestration_lb, preds = my_preds)

results %>% head()

obs preds
1 39.0 38.26301
2 110.2 66.90372
3 61.2 76.66064
4 34.0 33.92686
5 75.4 52.68092
6 96.1 83.09862

Let’s compute test rMSE

library(yardstick)
results %>% rmse(truth = obs, estimate = preds)

A tibble: 1 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>
1 rmse standard 11.3

• For reference, the bagged model had rMSE of 12.3, while the average rMSE for single
trees was 13.9

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 13 / 33

Random Forests Bagging and Random Forests in R Boosting

Making predictions

• So you have your randomForest model. How do you make predictions?
my_preds<- predict(rfmodel, my_pdxTrees_test)
results <- data.frame(obs = my_pdxTrees_test$Carbon_Sequestration_lb, preds = my_preds)

results %>% head()

obs preds
1 39.0 38.26301
2 110.2 66.90372
3 61.2 76.66064
4 34.0 33.92686
5 75.4 52.68092
6 96.1 83.09862

Let’s compute test rMSE
library(yardstick)
results %>% rmse(truth = obs, estimate = preds)

A tibble: 1 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>
1 rmse standard 11.3

• For reference, the bagged model had rMSE of 12.3, while the average rMSE for single
trees was 13.9

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 13 / 33

Random Forests Bagging and Random Forests in R Boosting

Making predictions

• So you have your randomForest model. How do you make predictions?
my_preds<- predict(rfmodel, my_pdxTrees_test)
results <- data.frame(obs = my_pdxTrees_test$Carbon_Sequestration_lb, preds = my_preds)

results %>% head()

obs preds
1 39.0 38.26301
2 110.2 66.90372
3 61.2 76.66064
4 34.0 33.92686
5 75.4 52.68092
6 96.1 83.09862

Let’s compute test rMSE
library(yardstick)
results %>% rmse(truth = obs, estimate = preds)

A tibble: 1 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>
1 rmse standard 11.3

• For reference, the bagged model had rMSE of 12.3, while the average rMSE for single
trees was 13.9

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 13 / 33

Random Forests Bagging and Random Forests in R Boosting

Variable Importance

Bagging and Random Forests increase prediction accuracy by reducing variance of the
model.

• But the cost comes in interpretability We no longer have a single decision tree to
follow to reach our prediction.

• How can we determine which predictors are most influential?

One possibility is to record the total amount of RSS/Purity that is decreased due to splits
of the given predictor, averaged across all trees in the random forest.

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 14 / 33

Random Forests Bagging and Random Forests in R Boosting

Variable Importance

Bagging and Random Forests increase prediction accuracy by reducing variance of the
model.

• But the cost comes in interpretability We no longer have a single decision tree to
follow to reach our prediction.

• How can we determine which predictors are most influential?

One possibility is to record the total amount of RSS/Purity that is decreased due to splits
of the given predictor, averaged across all trees in the random forest.

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 14 / 33

Random Forests Bagging and Random Forests in R Boosting

Variable Importance

Bagging and Random Forests increase prediction accuracy by reducing variance of the
model.

• But the cost comes in interpretability We no longer have a single decision tree to
follow to reach our prediction.

• How can we determine which predictors are most influential?

One possibility is to record the total amount of RSS/Purity that is decreased due to splits
of the given predictor, averaged across all trees in the random forest.

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 14 / 33

Random Forests Bagging and Random Forests in R Boosting

Variable Importance

Bagging and Random Forests increase prediction accuracy by reducing variance of the
model.

• But the cost comes in interpretability We no longer have a single decision tree to
follow to reach our prediction.

• How can we determine which predictors are most influential?

One possibility is to record the total amount of RSS/Purity that is decreased due to splits
of the given predictor, averaged across all trees in the random forest.

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 14 / 33

Random Forests Bagging and Random Forests in R Boosting

Importance in R

importance(rfmodel)

IncNodePurity
DBH 506807.58
Condition 54752.15
Tree_Height 204541.39
Crown_Width_NS 311571.85
Crown_Width_EW 335526.52
Crown_Base_Height 72446.30
Functional_Type 169066.91
Mature_Size 41094.65

varImpPlot(rfmodel)

Mature_Size

Condition

Crown_Base_Height

Functional_Type

Tree_Height

Crown_Width_NS

Crown_Width_EW

DBH

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

rfmodel

IncNodePurity
• For regression trees, node impurity is calculated using RSS.
• For classification trees, node impurity is calculated using Gini Index.

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 15 / 33

Random Forests Bagging and Random Forests in R Boosting

Importance in R

importance(rfmodel)

IncNodePurity
DBH 506807.58
Condition 54752.15
Tree_Height 204541.39
Crown_Width_NS 311571.85
Crown_Width_EW 335526.52
Crown_Base_Height 72446.30
Functional_Type 169066.91
Mature_Size 41094.65

varImpPlot(rfmodel)

Mature_Size

Condition

Crown_Base_Height

Functional_Type

Tree_Height

Crown_Width_NS

Crown_Width_EW

DBH

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

rfmodel

IncNodePurity

• For regression trees, node impurity is calculated using RSS.
• For classification trees, node impurity is calculated using Gini Index.

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 15 / 33

Random Forests Bagging and Random Forests in R Boosting

Importance in R

importance(rfmodel)

IncNodePurity
DBH 506807.58
Condition 54752.15
Tree_Height 204541.39
Crown_Width_NS 311571.85
Crown_Width_EW 335526.52
Crown_Base_Height 72446.30
Functional_Type 169066.91
Mature_Size 41094.65

varImpPlot(rfmodel)

Mature_Size

Condition

Crown_Base_Height

Functional_Type

Tree_Height

Crown_Width_NS

Crown_Width_EW

DBH

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

rfmodel

IncNodePurity
• For regression trees, node impurity is calculated using RSS.
• For classification trees, node impurity is calculated using Gini Index.

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 15 / 33

Random Forests Bagging and Random Forests in R Boosting

Comparison of Bagged Trees versus Random Forests

10.75

11.00

11.25

11.50

11.75

0 100 200 300 400 500
Number of Trees

R
M

S
E

model

Bagged

Random Forest

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 16 / 33

Random Forests Bagging and Random Forests in R Boosting

Section 3

Boosting

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 17 / 33

Random Forests Bagging and Random Forests in R Boosting

Motivation

Suppose you have a model which, given a binary classification dataset, always returned a
classifier with training error strictly lower than 50%.

• Can one use it to build a strong classifier that has error close to 0?

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 18 / 33

Random Forests Bagging and Random Forests in R Boosting

Motivation

Suppose you have a model which, given a binary classification dataset, always returned a
classifier with training error strictly lower than 50%.

• Can one use it to build a strong classifier that has error close to 0?

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 18 / 33

Random Forests Bagging and Random Forests in R Boosting

Motivation

Suppose you have a model which, given a binary classification dataset, always returned a
classifier with training error strictly lower than 50%.

• Can one use it to build a strong classifier that has error close to 0?

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 18 / 33

Random Forests Bagging and Random Forests in R Boosting

AdaBoost

In the 1990s, Shapire and Freund developed algorithms to do just that.

• Their algorithm (AdaBoost) generates a sequence of weak classifiers, where at each
iteration the algorithm finds the best classifier based on the current sample weights.

• Observations that are incorrectly classifed in the kth iteration recieve more weight in the
(k + 1)th iteration.

• The overall sequence of classifiers are combined into an ensemble which as high
chance of classifying more accurately than any individaul model in the list.

• The algorithm relies on using a sequence of weak learners (low variance, high bias)
• In the tree setting, we can create weak learners by restricting the depth of the tree.

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 19 / 33

Random Forests Bagging and Random Forests in R Boosting

AdaBoost

In the 1990s, Shapire and Freund developed algorithms to do just that.
• Their algorithm (AdaBoost) generates a sequence of weak classifiers, where at each

iteration the algorithm finds the best classifier based on the current sample weights.

• Observations that are incorrectly classifed in the kth iteration recieve more weight in the
(k + 1)th iteration.

• The overall sequence of classifiers are combined into an ensemble which as high
chance of classifying more accurately than any individaul model in the list.

• The algorithm relies on using a sequence of weak learners (low variance, high bias)
• In the tree setting, we can create weak learners by restricting the depth of the tree.

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 19 / 33

Random Forests Bagging and Random Forests in R Boosting

AdaBoost

In the 1990s, Shapire and Freund developed algorithms to do just that.
• Their algorithm (AdaBoost) generates a sequence of weak classifiers, where at each

iteration the algorithm finds the best classifier based on the current sample weights.
• Observations that are incorrectly classifed in the kth iteration recieve more weight in the

(k + 1)th iteration.

• The overall sequence of classifiers are combined into an ensemble which as high
chance of classifying more accurately than any individaul model in the list.

• The algorithm relies on using a sequence of weak learners (low variance, high bias)
• In the tree setting, we can create weak learners by restricting the depth of the tree.

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 19 / 33

Random Forests Bagging and Random Forests in R Boosting

AdaBoost

In the 1990s, Shapire and Freund developed algorithms to do just that.
• Their algorithm (AdaBoost) generates a sequence of weak classifiers, where at each

iteration the algorithm finds the best classifier based on the current sample weights.
• Observations that are incorrectly classifed in the kth iteration recieve more weight in the

(k + 1)th iteration.

• The overall sequence of classifiers are combined into an ensemble which as high
chance of classifying more accurately than any individaul model in the list.

• The algorithm relies on using a sequence of weak learners (low variance, high bias)
• In the tree setting, we can create weak learners by restricting the depth of the tree.

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 19 / 33

Random Forests Bagging and Random Forests in R Boosting

AdaBoost

In the 1990s, Shapire and Freund developed algorithms to do just that.
• Their algorithm (AdaBoost) generates a sequence of weak classifiers, where at each

iteration the algorithm finds the best classifier based on the current sample weights.
• Observations that are incorrectly classifed in the kth iteration recieve more weight in the

(k + 1)th iteration.

• The overall sequence of classifiers are combined into an ensemble which as high
chance of classifying more accurately than any individaul model in the list.

• The algorithm relies on using a sequence of weak learners (low variance, high bias)

• In the tree setting, we can create weak learners by restricting the depth of the tree.

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 19 / 33

Random Forests Bagging and Random Forests in R Boosting

AdaBoost

In the 1990s, Shapire and Freund developed algorithms to do just that.
• Their algorithm (AdaBoost) generates a sequence of weak classifiers, where at each

iteration the algorithm finds the best classifier based on the current sample weights.
• Observations that are incorrectly classifed in the kth iteration recieve more weight in the

(k + 1)th iteration.

• The overall sequence of classifiers are combined into an ensemble which as high
chance of classifying more accurately than any individaul model in the list.

• The algorithm relies on using a sequence of weak learners (low variance, high bias)
• In the tree setting, we can create weak learners by restricting the depth of the tree.

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 19 / 33

Random Forests Bagging and Random Forests in R Boosting

AdaBoost Graphic

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 20 / 33

Random Forests Bagging and Random Forests in R Boosting

Boosting for regression

Boosting also works in the regression setting. The gradient boosting machine is a
boosting algorithm that works as follows:

1 Select tree depth D and number of iterations K .

2 Compute the average response ŷ and use this as the initial predicted value for each
observation

3 Compute the residual for each observation.

4 Fit a regression tree of depth D, using the residuals as the response.

5 Predict each observation using the regression tree from the previous step.

6 Update the predicted value of each observation by adding the previous iteration’s
predicted value to the predicted value generated in the previous step.

7 Repeat at total of K times.

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 21 / 33

Random Forests Bagging and Random Forests in R Boosting

Brief Example

Compute the mean:
mu <- mean(my_pdxTrees_train$Carbon_Sequestration_lb)
mu

[1] 34.49668

Compute residuals:
my_pdxTrees_train_boost <- my_pdxTrees_train %>%

mutate(residuals1 = Carbon_Sequestration_lb - mu)

Fit a new tree
boost_tree_model<- rpart(residuals1 ~ Crown_Base_Height,

data = my_pdxTrees_train_boost,
control = rpart.control(maxdepth = 2))

Predict
predictions<- predict(boost_tree_model, data = my_pdxTrees_test)+mu

And so on. . .

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 22 / 33

Random Forests Bagging and Random Forests in R Boosting

Brief Example

Compute the mean:
mu <- mean(my_pdxTrees_train$Carbon_Sequestration_lb)
mu

[1] 34.49668

Compute residuals:
my_pdxTrees_train_boost <- my_pdxTrees_train %>%

mutate(residuals1 = Carbon_Sequestration_lb - mu)

Fit a new tree
boost_tree_model<- rpart(residuals1 ~ Crown_Base_Height,

data = my_pdxTrees_train_boost,
control = rpart.control(maxdepth = 2))

Predict
predictions<- predict(boost_tree_model, data = my_pdxTrees_test)+mu

And so on. . .

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 22 / 33

Random Forests Bagging and Random Forests in R Boosting

Brief Example

Compute the mean:
mu <- mean(my_pdxTrees_train$Carbon_Sequestration_lb)
mu

[1] 34.49668

Compute residuals:
my_pdxTrees_train_boost <- my_pdxTrees_train %>%

mutate(residuals1 = Carbon_Sequestration_lb - mu)

Fit a new tree
boost_tree_model<- rpart(residuals1 ~ Crown_Base_Height,

data = my_pdxTrees_train_boost,
control = rpart.control(maxdepth = 2))

Predict
predictions<- predict(boost_tree_model, data = my_pdxTrees_test)+mu

And so on. . .

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 22 / 33

Random Forests Bagging and Random Forests in R Boosting

Brief Example

Compute the mean:
mu <- mean(my_pdxTrees_train$Carbon_Sequestration_lb)
mu

[1] 34.49668

Compute residuals:
my_pdxTrees_train_boost <- my_pdxTrees_train %>%

mutate(residuals1 = Carbon_Sequestration_lb - mu)

Fit a new tree
boost_tree_model<- rpart(residuals1 ~ Crown_Base_Height,

data = my_pdxTrees_train_boost,
control = rpart.control(maxdepth = 2))

Predict
predictions<- predict(boost_tree_model, data = my_pdxTrees_test)+mu

And so on. . .

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 22 / 33

Random Forests Bagging and Random Forests in R Boosting

Brief Example

Compute the mean:
mu <- mean(my_pdxTrees_train$Carbon_Sequestration_lb)
mu

[1] 34.49668

Compute residuals:
my_pdxTrees_train_boost <- my_pdxTrees_train %>%

mutate(residuals1 = Carbon_Sequestration_lb - mu)

Fit a new tree
boost_tree_model<- rpart(residuals1 ~ Crown_Base_Height,

data = my_pdxTrees_train_boost,
control = rpart.control(maxdepth = 2))

Predict
predictions<- predict(boost_tree_model, data = my_pdxTrees_test)+mu

And so on. . .

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 22 / 33

Random Forests Bagging and Random Forests in R Boosting

Boosting Properties

Boosting is similar to random forests: the final prediction is sum of predictions from an
ensemble of models.

• But in Random Forests, all trees are created independently, are of maximum depth,
and contribute equally to the final model.

• In boosting, subsequent trees are are highly dependent on past trees, have minimal
depth, and contribute unequally.

Unlike random forests, boosting is susceptible to over-fitting (since it uses a greedy
algorithm to maximize gradient at each step).

• To remedy, we introduce a shrinkage penalty (like in Ridge Regression/LASSO)
• Instead of adding the full value for a sample to the previous iteration’s predicted value,

only a fraction of the current predicted value is added.
• This fraction is called the learning rate λ, with 0 < λ < 1. (Typical values range from

0.001 to 0.01)

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 23 / 33

Random Forests Bagging and Random Forests in R Boosting

Boosting Properties

Boosting is similar to random forests: the final prediction is sum of predictions from an
ensemble of models.

• But in Random Forests, all trees are created independently, are of maximum depth,
and contribute equally to the final model.

• In boosting, subsequent trees are are highly dependent on past trees, have minimal
depth, and contribute unequally.

Unlike random forests, boosting is susceptible to over-fitting (since it uses a greedy
algorithm to maximize gradient at each step).

• To remedy, we introduce a shrinkage penalty (like in Ridge Regression/LASSO)
• Instead of adding the full value for a sample to the previous iteration’s predicted value,

only a fraction of the current predicted value is added.
• This fraction is called the learning rate λ, with 0 < λ < 1. (Typical values range from

0.001 to 0.01)

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 23 / 33

Random Forests Bagging and Random Forests in R Boosting

Boosting Properties

Boosting is similar to random forests: the final prediction is sum of predictions from an
ensemble of models.

• But in Random Forests, all trees are created independently, are of maximum depth,
and contribute equally to the final model.

• In boosting, subsequent trees are are highly dependent on past trees, have minimal
depth, and contribute unequally.

Unlike random forests, boosting is susceptible to over-fitting (since it uses a greedy
algorithm to maximize gradient at each step).

• To remedy, we introduce a shrinkage penalty (like in Ridge Regression/LASSO)
• Instead of adding the full value for a sample to the previous iteration’s predicted value,

only a fraction of the current predicted value is added.
• This fraction is called the learning rate λ, with 0 < λ < 1. (Typical values range from

0.001 to 0.01)

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 23 / 33

Random Forests Bagging and Random Forests in R Boosting

Boosting Properties

Boosting is similar to random forests: the final prediction is sum of predictions from an
ensemble of models.

• But in Random Forests, all trees are created independently, are of maximum depth,
and contribute equally to the final model.

• In boosting, subsequent trees are are highly dependent on past trees, have minimal
depth, and contribute unequally.

Unlike random forests, boosting is susceptible to over-fitting (since it uses a greedy
algorithm to maximize gradient at each step).

• To remedy, we introduce a shrinkage penalty (like in Ridge Regression/LASSO)
• Instead of adding the full value for a sample to the previous iteration’s predicted value,

only a fraction of the current predicted value is added.
• This fraction is called the learning rate λ, with 0 < λ < 1. (Typical values range from

0.001 to 0.01)

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 23 / 33

Random Forests Bagging and Random Forests in R Boosting

Boosting Properties

Boosting is similar to random forests: the final prediction is sum of predictions from an
ensemble of models.

• But in Random Forests, all trees are created independently, are of maximum depth,
and contribute equally to the final model.

• In boosting, subsequent trees are are highly dependent on past trees, have minimal
depth, and contribute unequally.

Unlike random forests, boosting is susceptible to over-fitting (since it uses a greedy
algorithm to maximize gradient at each step).

• To remedy, we introduce a shrinkage penalty (like in Ridge Regression/LASSO)

• Instead of adding the full value for a sample to the previous iteration’s predicted value,
only a fraction of the current predicted value is added.

• This fraction is called the learning rate λ, with 0 < λ < 1. (Typical values range from
0.001 to 0.01)

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 23 / 33

Random Forests Bagging and Random Forests in R Boosting

Boosting Properties

Boosting is similar to random forests: the final prediction is sum of predictions from an
ensemble of models.

• But in Random Forests, all trees are created independently, are of maximum depth,
and contribute equally to the final model.

• In boosting, subsequent trees are are highly dependent on past trees, have minimal
depth, and contribute unequally.

Unlike random forests, boosting is susceptible to over-fitting (since it uses a greedy
algorithm to maximize gradient at each step).

• To remedy, we introduce a shrinkage penalty (like in Ridge Regression/LASSO)
• Instead of adding the full value for a sample to the previous iteration’s predicted value,

only a fraction of the current predicted value is added.

• This fraction is called the learning rate λ, with 0 < λ < 1. (Typical values range from
0.001 to 0.01)

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 23 / 33

Random Forests Bagging and Random Forests in R Boosting

Boosting Properties

Boosting is similar to random forests: the final prediction is sum of predictions from an
ensemble of models.

• But in Random Forests, all trees are created independently, are of maximum depth,
and contribute equally to the final model.

• In boosting, subsequent trees are are highly dependent on past trees, have minimal
depth, and contribute unequally.

Unlike random forests, boosting is susceptible to over-fitting (since it uses a greedy
algorithm to maximize gradient at each step).

• To remedy, we introduce a shrinkage penalty (like in Ridge Regression/LASSO)
• Instead of adding the full value for a sample to the previous iteration’s predicted value,

only a fraction of the current predicted value is added.
• This fraction is called the learning rate λ, with 0 < λ < 1. (Typical values range from

0.001 to 0.01)

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 23 / 33

Random Forests Bagging and Random Forests in R Boosting

Boosting in R

We use the gbm function in the gmb package to create Boosted Trees

• For regression problems, we use the argument distribution = "gaussian" and for
classification problems, we use distribution = "bernoulli"

• The argument n.trees controls the number of iterations
• The argument interaction.depth controls the depth of each tree
• The argument shrinkage controlls the learning rate λ

library(gbm)
set.seed(10101)
boosted_tree<-gbm(Carbon_Sequestration_lb ~., my_pdxTrees_train,

distribution = "gaussian",
n.trees=5000,
interaction.depth = 3,
shrinkage = .0025)

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 24 / 33

Random Forests Bagging and Random Forests in R Boosting

Boosting in R

We use the gbm function in the gmb package to create Boosted Trees
• For regression problems, we use the argument distribution = "gaussian" and for

classification problems, we use distribution = "bernoulli"

• The argument n.trees controls the number of iterations
• The argument interaction.depth controls the depth of each tree
• The argument shrinkage controlls the learning rate λ

library(gbm)
set.seed(10101)
boosted_tree<-gbm(Carbon_Sequestration_lb ~., my_pdxTrees_train,

distribution = "gaussian",
n.trees=5000,
interaction.depth = 3,
shrinkage = .0025)

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 24 / 33

Random Forests Bagging and Random Forests in R Boosting

Boosting in R

We use the gbm function in the gmb package to create Boosted Trees
• For regression problems, we use the argument distribution = "gaussian" and for

classification problems, we use distribution = "bernoulli"

• The argument n.trees controls the number of iterations
• The argument interaction.depth controls the depth of each tree
• The argument shrinkage controlls the learning rate λ

library(gbm)
set.seed(10101)
boosted_tree<-gbm(Carbon_Sequestration_lb ~., my_pdxTrees_train,

distribution = "gaussian",
n.trees=5000,
interaction.depth = 3,
shrinkage = .0025)

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 24 / 33

Random Forests Bagging and Random Forests in R Boosting

Boosting in R

We use the gbm function in the gmb package to create Boosted Trees
• For regression problems, we use the argument distribution = "gaussian" and for

classification problems, we use distribution = "bernoulli"

• The argument n.trees controls the number of iterations
• The argument interaction.depth controls the depth of each tree
• The argument shrinkage controlls the learning rate λ

library(gbm)
set.seed(10101)
boosted_tree<-gbm(Carbon_Sequestration_lb ~., my_pdxTrees_train,

distribution = "gaussian",
n.trees=5000,
interaction.depth = 3,
shrinkage = .0025)

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 24 / 33

Random Forests Bagging and Random Forests in R Boosting

Summary Information
summary(boosted_tree)

var rel.inf
DBH DBH 48.8607778
Functional_Type Functional_Type 20.1833428
Crown_Width_EW Crown_Width_EW 14.2618538
Crown_Width_NS Crown_Width_NS 9.5128157
Condition Condition 4.0105335
Tree_Height Tree_Height 2.1739086
Crown_Base_Height Crown_Base_Height 0.7980455
Mature_Size Mature_Size 0.1987224

Mature_Size

Crown_Base_Height

Tree_Height

Condition

Crown_Width_NS

Crown_Width_EW

Functional_Type

DBH

Relative influence

0 10 20 30 40

var rel.inf
DBH DBH 48.8607778
Functional_Type Functional_Type 20.1833428
Crown_Width_EW Crown_Width_EW 14.2618538
Crown_Width_NS Crown_Width_NS 9.5128157
Condition Condition 4.0105335
Tree_Height Tree_Height 2.1739086
Crown_Base_Height Crown_Base_Height 0.7980455
Mature_Size Mature_Size 0.1987224

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 25 / 33

Random Forests Bagging and Random Forests in R Boosting

Boosted Tree Performance

• How does the boosted tree do vs Random Forest? A pruned tree? A linear model?

results %>% group_by(model) %>% rmse(truth = obs, estimate = preds) %>% arrange(.estimate)

A tibble: 4 x 4
model .metric .estimator .estimate
<chr> <chr> <chr> <dbl>
1 random_forest rmse standard 10.8
2 boosted_tree rmse standard 11.2
3 pruned_tree rmse standard 13.7
4 linear_model rmse standard 17.7

• This behavior is typical. Boosted trees and Random Forests often have comparable
performance, and both tend to be more accurate than other model types

• However, this performance comes at significant cost of interpretability.

• Note that boosted trees have a number of important parameters: n.trees,
interaction.depth, shrinkage.

• How do we find the best values of these hyperparameters?
• Cross-validation!

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 26 / 33

Random Forests Bagging and Random Forests in R Boosting

Boosted Tree Performance

• How does the boosted tree do vs Random Forest? A pruned tree? A linear model?
results %>% group_by(model) %>% rmse(truth = obs, estimate = preds) %>% arrange(.estimate)

A tibble: 4 x 4
model .metric .estimator .estimate
<chr> <chr> <chr> <dbl>
1 random_forest rmse standard 10.8
2 boosted_tree rmse standard 11.2
3 pruned_tree rmse standard 13.7
4 linear_model rmse standard 17.7

• This behavior is typical. Boosted trees and Random Forests often have comparable
performance, and both tend to be more accurate than other model types

• However, this performance comes at significant cost of interpretability.

• Note that boosted trees have a number of important parameters: n.trees,
interaction.depth, shrinkage.

• How do we find the best values of these hyperparameters?
• Cross-validation!

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 26 / 33

Random Forests Bagging and Random Forests in R Boosting

Boosted Tree Performance

• How does the boosted tree do vs Random Forest? A pruned tree? A linear model?
results %>% group_by(model) %>% rmse(truth = obs, estimate = preds) %>% arrange(.estimate)

A tibble: 4 x 4
model .metric .estimator .estimate
<chr> <chr> <chr> <dbl>
1 random_forest rmse standard 10.8
2 boosted_tree rmse standard 11.2
3 pruned_tree rmse standard 13.7
4 linear_model rmse standard 17.7

• This behavior is typical. Boosted trees and Random Forests often have comparable
performance, and both tend to be more accurate than other model types

• However, this performance comes at significant cost of interpretability.

• Note that boosted trees have a number of important parameters: n.trees,
interaction.depth, shrinkage.

• How do we find the best values of these hyperparameters?
• Cross-validation!

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 26 / 33

Random Forests Bagging and Random Forests in R Boosting

Boosted Tree Performance

• How does the boosted tree do vs Random Forest? A pruned tree? A linear model?
results %>% group_by(model) %>% rmse(truth = obs, estimate = preds) %>% arrange(.estimate)

A tibble: 4 x 4
model .metric .estimator .estimate
<chr> <chr> <chr> <dbl>
1 random_forest rmse standard 10.8
2 boosted_tree rmse standard 11.2
3 pruned_tree rmse standard 13.7
4 linear_model rmse standard 17.7

• This behavior is typical. Boosted trees and Random Forests often have comparable
performance, and both tend to be more accurate than other model types

• However, this performance comes at significant cost of interpretability.

• Note that boosted trees have a number of important parameters: n.trees,
interaction.depth, shrinkage.

• How do we find the best values of these hyperparameters?
• Cross-validation!

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 26 / 33

Random Forests Bagging and Random Forests in R Boosting

Boosted Tree Performance

• How does the boosted tree do vs Random Forest? A pruned tree? A linear model?
results %>% group_by(model) %>% rmse(truth = obs, estimate = preds) %>% arrange(.estimate)

A tibble: 4 x 4
model .metric .estimator .estimate
<chr> <chr> <chr> <dbl>
1 random_forest rmse standard 10.8
2 boosted_tree rmse standard 11.2
3 pruned_tree rmse standard 13.7
4 linear_model rmse standard 17.7

• This behavior is typical. Boosted trees and Random Forests often have comparable
performance, and both tend to be more accurate than other model types

• However, this performance comes at significant cost of interpretability.

• Note that boosted trees have a number of important parameters: n.trees,
interaction.depth, shrinkage.

• How do we find the best values of these hyperparameters?
• Cross-validation!

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 26 / 33

Random Forests Bagging and Random Forests in R Boosting

Boosted Tree Performance

• How does the boosted tree do vs Random Forest? A pruned tree? A linear model?
results %>% group_by(model) %>% rmse(truth = obs, estimate = preds) %>% arrange(.estimate)

A tibble: 4 x 4
model .metric .estimator .estimate
<chr> <chr> <chr> <dbl>
1 random_forest rmse standard 10.8
2 boosted_tree rmse standard 11.2
3 pruned_tree rmse standard 13.7
4 linear_model rmse standard 17.7

• This behavior is typical. Boosted trees and Random Forests often have comparable
performance, and both tend to be more accurate than other model types

• However, this performance comes at significant cost of interpretability.

• Note that boosted trees have a number of important parameters: n.trees,
interaction.depth, shrinkage.

• How do we find the best values of these hyperparameters?

• Cross-validation!

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 26 / 33

Random Forests Bagging and Random Forests in R Boosting

Boosted Tree Performance

• How does the boosted tree do vs Random Forest? A pruned tree? A linear model?
results %>% group_by(model) %>% rmse(truth = obs, estimate = preds) %>% arrange(.estimate)

A tibble: 4 x 4
model .metric .estimator .estimate
<chr> <chr> <chr> <dbl>
1 random_forest rmse standard 10.8
2 boosted_tree rmse standard 11.2
3 pruned_tree rmse standard 13.7
4 linear_model rmse standard 17.7

• This behavior is typical. Boosted trees and Random Forests often have comparable
performance, and both tend to be more accurate than other model types

• However, this performance comes at significant cost of interpretability.

• Note that boosted trees have a number of important parameters: n.trees,
interaction.depth, shrinkage.

• How do we find the best values of these hyperparameters?
• Cross-validation!

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 26 / 33

Random Forests Bagging and Random Forests in R Boosting

Cross-Validating gbm

Warning! fitting a single gbm models can be time and computing intensive.
• Using cross-validation to compare multiple models can be VERY time and computing

intensive
• Cross-validation for gbm models is NOT RECOMMENDED if using the RStudio Server

• We can include an additional cross-validation term in our boosted tree model.
• It may be helpful to include a number of CPU cores as well. First verify your number of

available cores using parallel::decectCores()
library(gbm)
set.seed(10101)
cv_boosted_tree<-gbm(Carbon_Sequestration_lb ~., my_pdxTrees_train,

distribution = "gaussian",
n.trees=10000,
interaction.depth = 3,
shrinkage = .01,
cv.folds = 10,
n.cores = 8)

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 27 / 33

Random Forests Bagging and Random Forests in R Boosting

Cross-Validating gbm

Warning! fitting a single gbm models can be time and computing intensive.
• Using cross-validation to compare multiple models can be VERY time and computing

intensive
• Cross-validation for gbm models is NOT RECOMMENDED if using the RStudio Server
• We can include an additional cross-validation term in our boosted tree model.

• It may be helpful to include a number of CPU cores as well. First verify your number of
available cores using parallel::decectCores()

library(gbm)
set.seed(10101)
cv_boosted_tree<-gbm(Carbon_Sequestration_lb ~., my_pdxTrees_train,

distribution = "gaussian",
n.trees=10000,
interaction.depth = 3,
shrinkage = .01,
cv.folds = 10,
n.cores = 8)

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 27 / 33

Random Forests Bagging and Random Forests in R Boosting

CV Results

• We can plot cross-validated performance using gbm.perf()
gbm.perf(cv_boosted_tree, method = "cv")

0 2000 4000 6000 8000 10000

0
20

0
40

0
60

0
80

0

Iteration

S
qu

ar
ed

 e
rr

or
 lo

ss

[1] 4290

• The green curve is the cross-validated error, while the black curve is the training error.

• The blue vertical line is the optimal value of the cross-validated error

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 28 / 33

Random Forests Bagging and Random Forests in R Boosting

CV Results

• We can plot cross-validated performance using gbm.perf()
gbm.perf(cv_boosted_tree, method = "cv")

0 2000 4000 6000 8000 10000

0
20

0
40

0
60

0
80

0

Iteration

S
qu

ar
ed

 e
rr

or
 lo

ss

[1] 4290

• The green curve is the cross-validated error, while the black curve is the training error.

• The blue vertical line is the optimal value of the cross-validated error

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 28 / 33

Random Forests Bagging and Random Forests in R Boosting

CV Results

• We can plot cross-validated performance using gbm.perf()
gbm.perf(cv_boosted_tree, method = "cv")

0 2000 4000 6000 8000 10000

0
20

0
40

0
60

0
80

0

Iteration

S
qu

ar
ed

 e
rr

or
 lo

ss

[1] 4290

• The green curve is the cross-validated error, while the black curve is the training error.

• The blue vertical line is the optimal value of the cross-validated error

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 28 / 33

Random Forests Bagging and Random Forests in R Boosting

Recording CV Error

• The gbm object also stores the values of the cross-validated errors for each number of
trees used, accessible via $cv.errors

my_errors <- cv_boosted_tree$cv.error
best_n <- which.min(cv_boosted_tree$cv.error)
data.frame(best_n, cv_error = my_errors[best_n])

best_n cv_error
1 4290 93.01164

• This is particularly useful if we want to record the error for a model with certain
parameters

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 29 / 33

Random Forests Bagging and Random Forests in R Boosting

Recording CV Error

• The gbm object also stores the values of the cross-validated errors for each number of
trees used, accessible via $cv.errors

my_errors <- cv_boosted_tree$cv.error
best_n <- which.min(cv_boosted_tree$cv.error)
data.frame(best_n, cv_error = my_errors[best_n])

best_n cv_error
1 4290 93.01164

• This is particularly useful if we want to record the error for a model with certain
parameters

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 29 / 33

Random Forests Bagging and Random Forests in R Boosting

Recording CV Error

• The gbm object also stores the values of the cross-validated errors for each number of
trees used, accessible via $cv.errors

my_errors <- cv_boosted_tree$cv.error
best_n <- which.min(cv_boosted_tree$cv.error)
data.frame(best_n, cv_error = my_errors[best_n])

best_n cv_error
1 4290 93.01164

• This is particularly useful if we want to record the error for a model with certain
parameters

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 29 / 33

Random Forests Bagging and Random Forests in R Boosting

General Strategy for finding best Parameters

1 Choose a relatively high initial learning rate. A rate of 0.1 is a reasonable starting
point.

2 Determine the optimal number of trees for this learning rate using cross-validation.

3 Fix other tree-specific parameters and tune the learning rate, assessed by computation
speed and model accuracy.

4 Tune tree-specific parameters for fixed learning rate.

5 Once tree-specific parameters have been found, lower learning rate and increase
number of trees to assess improvements in accuracy.

Warning! This search can take considerable time (minutes to hours), depending on
computing power, number of variables in model, and number of observations. DO NOT
ATTEMPT ON RSTUDIO SERVER!!

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 30 / 33

Random Forests Bagging and Random Forests in R Boosting

Cross-Validation along a Grid

• In order to cross-validate a large number of parameters, we create a parameter grid:

my_grid <- expand.grid(
n.trees = 5000,
shrinkage = 0.01,
interaction.depth = c(3,5,7),
n.minobsinnode = c(5,10,15)

)

• Then we create a model fitting function:
model_fit <- function(n.trees, shrinkage, interaction.depth, n.minobsinnode){

set.seed(40)
library(gbm)
gbm_mod <- bm(Carbon_Sequestration_lb ~., my_pdxTrees_train,

distribution = "gaussian",
n.trees=n.trees,
interaction.depth = interaction.depth,
shrinkage = shrinkage,
cv.folds = 10,
n.cores = 8,

n.minobsinnode = n.minobsinnode)
rMSE <- sqrt(min(gbm_mod$cv.error))
rMSE

}

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 31 / 33

Random Forests Bagging and Random Forests in R Boosting

Cross-Validation along a Grid

• In order to cross-validate a large number of parameters, we create a parameter grid:
my_grid <- expand.grid(

n.trees = 5000,
shrinkage = 0.01,
interaction.depth = c(3,5,7),
n.minobsinnode = c(5,10,15)

)

• Then we create a model fitting function:
model_fit <- function(n.trees, shrinkage, interaction.depth, n.minobsinnode){

set.seed(40)
library(gbm)
gbm_mod <- bm(Carbon_Sequestration_lb ~., my_pdxTrees_train,

distribution = "gaussian",
n.trees=n.trees,
interaction.depth = interaction.depth,
shrinkage = shrinkage,
cv.folds = 10,
n.cores = 8,

n.minobsinnode = n.minobsinnode)
rMSE <- sqrt(min(gbm_mod$cv.error))
rMSE

}

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 31 / 33

Random Forests Bagging and Random Forests in R Boosting

Cross-Validation along a Grid

• In order to cross-validate a large number of parameters, we create a parameter grid:
my_grid <- expand.grid(

n.trees = 5000,
shrinkage = 0.01,
interaction.depth = c(3,5,7),
n.minobsinnode = c(5,10,15)

)

• Then we create a model fitting function:

model_fit <- function(n.trees, shrinkage, interaction.depth, n.minobsinnode){
set.seed(40)
library(gbm)
gbm_mod <- bm(Carbon_Sequestration_lb ~., my_pdxTrees_train,

distribution = "gaussian",
n.trees=n.trees,
interaction.depth = interaction.depth,
shrinkage = shrinkage,
cv.folds = 10,
n.cores = 8,

n.minobsinnode = n.minobsinnode)
rMSE <- sqrt(min(gbm_mod$cv.error))
rMSE

}

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 31 / 33

Random Forests Bagging and Random Forests in R Boosting

Cross-Validation along a Grid

• In order to cross-validate a large number of parameters, we create a parameter grid:
my_grid <- expand.grid(

n.trees = 5000,
shrinkage = 0.01,
interaction.depth = c(3,5,7),
n.minobsinnode = c(5,10,15)

)

• Then we create a model fitting function:
model_fit <- function(n.trees, shrinkage, interaction.depth, n.minobsinnode){

set.seed(40)
library(gbm)
gbm_mod <- bm(Carbon_Sequestration_lb ~., my_pdxTrees_train,

distribution = "gaussian",
n.trees=n.trees,
interaction.depth = interaction.depth,
shrinkage = shrinkage,
cv.folds = 10,
n.cores = 8,

n.minobsinnode = n.minobsinnode)
rMSE <- sqrt(min(gbm_mod$cv.error))
rMSE

}

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 31 / 33

Random Forests Bagging and Random Forests in R Boosting

Cross-Validation along a Grid

• In order to cross-validate a large number of parameters, we create a parameter grid:

my_grid <- expand.grid(
n.trees = 5000,
shrinkage = 0.01,
interaction.depth = c(3,5,7),
n.minobsinnode = c(5,10,15)

)

• Then we create a model fitting function:
model_fit <- function(n.trees, shrinkage, interaction.depth, n.minobsinnode){

set.seed(40)
library(gbm)
gbm_mod <- gbm(Carbon_Sequestration_lb ~., my_pdxTrees_train,

distribution = "gaussian",
n.trees=n.trees,
interaction.depth = interaction.depth,
shrinkage = shrinkage,
cv.folds = 10,
n.cores = 8,

n.minobsinnode = n.minobsinnode)
rMSE <- sqrt(min(gbm_mod$cv.error))
rMSE

}

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 32 / 33

Random Forests Bagging and Random Forests in R Boosting

Cross-Validation along a Grid

• In order to cross-validate a large number of parameters, we create a parameter grid:
my_grid <- expand.grid(

n.trees = 5000,
shrinkage = 0.01,
interaction.depth = c(3,5,7),
n.minobsinnode = c(5,10,15)

)

• Then we create a model fitting function:
model_fit <- function(n.trees, shrinkage, interaction.depth, n.minobsinnode){

set.seed(40)
library(gbm)
gbm_mod <- gbm(Carbon_Sequestration_lb ~., my_pdxTrees_train,

distribution = "gaussian",
n.trees=n.trees,
interaction.depth = interaction.depth,
shrinkage = shrinkage,
cv.folds = 10,
n.cores = 8,

n.minobsinnode = n.minobsinnode)
rMSE <- sqrt(min(gbm_mod$cv.error))
rMSE

}

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 32 / 33

Random Forests Bagging and Random Forests in R Boosting

Cross-Validation along a Grid

• In order to cross-validate a large number of parameters, we create a parameter grid:
my_grid <- expand.grid(

n.trees = 5000,
shrinkage = 0.01,
interaction.depth = c(3,5,7),
n.minobsinnode = c(5,10,15)

)

• Then we create a model fitting function:

model_fit <- function(n.trees, shrinkage, interaction.depth, n.minobsinnode){
set.seed(40)
library(gbm)
gbm_mod <- gbm(Carbon_Sequestration_lb ~., my_pdxTrees_train,

distribution = "gaussian",
n.trees=n.trees,
interaction.depth = interaction.depth,
shrinkage = shrinkage,
cv.folds = 10,
n.cores = 8,

n.minobsinnode = n.minobsinnode)
rMSE <- sqrt(min(gbm_mod$cv.error))
rMSE

}

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 32 / 33

Random Forests Bagging and Random Forests in R Boosting

Cross-Validation along a Grid

• In order to cross-validate a large number of parameters, we create a parameter grid:
my_grid <- expand.grid(

n.trees = 5000,
shrinkage = 0.01,
interaction.depth = c(3,5,7),
n.minobsinnode = c(5,10,15)

)

• Then we create a model fitting function:
model_fit <- function(n.trees, shrinkage, interaction.depth, n.minobsinnode){

set.seed(40)
library(gbm)
gbm_mod <- gbm(Carbon_Sequestration_lb ~., my_pdxTrees_train,

distribution = "gaussian",
n.trees=n.trees,
interaction.depth = interaction.depth,
shrinkage = shrinkage,
cv.folds = 10,
n.cores = 8,

n.minobsinnode = n.minobsinnode)
rMSE <- sqrt(min(gbm_mod$cv.error))
rMSE

}

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 32 / 33

Random Forests Bagging and Random Forests in R Boosting

Implementing the Grid Search

We now use the pmap_dbl function from purrr:

library(purrr)
my_grid$rmse <- pmap_dbl(

my_grid,
~ model_fit(

n.trees = ..1,
shrinkage = ..2,
interaction =..3,
n.minobsinnode = ..4

)
)

We can then view results of the exhuastive search:
head(arrange(my_grid, rmse))

n.trees shrinkage interaction.depth n.minobsinnode rmse
1 5000 0.01 7 5 9.389038
2 5000 0.01 7 10 9.486088
3 5000 0.01 5 5 9.557491
4 5000 0.01 7 15 9.610702
5 5000 0.01 5 10 9.708710
6 5000 0.01 5 15 9.708723

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 33 / 33

Random Forests Bagging and Random Forests in R Boosting

Implementing the Grid Search

We now use the pmap_dbl function from purrr:
library(purrr)
my_grid$rmse <- pmap_dbl(

my_grid,
~ model_fit(

n.trees = ..1,
shrinkage = ..2,
interaction =..3,
n.minobsinnode = ..4

)
)

We can then view results of the exhuastive search:
head(arrange(my_grid, rmse))

n.trees shrinkage interaction.depth n.minobsinnode rmse
1 5000 0.01 7 5 9.389038
2 5000 0.01 7 10 9.486088
3 5000 0.01 5 5 9.557491
4 5000 0.01 7 15 9.610702
5 5000 0.01 5 10 9.708710
6 5000 0.01 5 15 9.708723

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 33 / 33

Random Forests Bagging and Random Forests in R Boosting

Implementing the Grid Search

We now use the pmap_dbl function from purrr:
library(purrr)
my_grid$rmse <- pmap_dbl(

my_grid,
~ model_fit(

n.trees = ..1,
shrinkage = ..2,
interaction =..3,
n.minobsinnode = ..4

)
)

We can then view results of the exhuastive search:

head(arrange(my_grid, rmse))

n.trees shrinkage interaction.depth n.minobsinnode rmse
1 5000 0.01 7 5 9.389038
2 5000 0.01 7 10 9.486088
3 5000 0.01 5 5 9.557491
4 5000 0.01 7 15 9.610702
5 5000 0.01 5 10 9.708710
6 5000 0.01 5 15 9.708723

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 33 / 33

Random Forests Bagging and Random Forests in R Boosting

Implementing the Grid Search

We now use the pmap_dbl function from purrr:
library(purrr)
my_grid$rmse <- pmap_dbl(

my_grid,
~ model_fit(

n.trees = ..1,
shrinkage = ..2,
interaction =..3,
n.minobsinnode = ..4

)
)

We can then view results of the exhuastive search:
head(arrange(my_grid, rmse))

n.trees shrinkage interaction.depth n.minobsinnode rmse
1 5000 0.01 7 5 9.389038
2 5000 0.01 7 10 9.486088
3 5000 0.01 5 5 9.557491
4 5000 0.01 7 15 9.610702
5 5000 0.01 5 10 9.708710
6 5000 0.01 5 15 9.708723

Prof Wells (STA 295: Stat Learning) Random Forests and Boosted Trees April 23rd, 2024 33 / 33

	Random Forests
	Bagging and Random Forests in R
	Boosting

