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Outline

® |ntroduce ensemble modeling as means of improving low accuracy models
® Discuss bagging and random forests as methods for reducing variance in decision trees

® |mplement random forests in R
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Who Wants to Be a Millionaire?

® Who Wants to Be a Millionaire is a television gameshow that debuted in the 1990s
and in which contestants answer a series of increasingly difficult multiple choice
questions in order to win the grand prize of $1,000,000.

r B
$1 MILLION

Although he and his wife never touched a light switch for fear of being shocked,
who was the first president to have electricity in the White House?

- A: Ulysses S. Grant *_- B: Benjamin Harrison

- C: Chester A. Arthur - D:Andrew Johnson
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Who Wants to Be a Millionaire?

® The original show included 3 “lifeline” options contestants could use to answer
questions:

® 50:50: Two randomly selected incorrect answers are eliminated
® Phone a Friend: The contestant calls a friend and is given 30 seconds to discuss

® Ask the Audience: Audience members each vote on the answer they think is correct

s
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Who Wants to Be a Millionaire?

® The original show included 3 “lifeline” options contestants could use to answer
questions:

® 50:50: Two randomly selected incorrect answers are eliminated
® Phone a Friend: The contestant calls a friend and is given 30 seconds to discuss

® Ask the Audience: Audience members each vote on the answer they think is correct

s

® Which lifeline has the highest chance of producing the correct answer?
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Who Wants to Be a Millionaire?

® The original show included 3 “lifeline” options contestants could use to answer
questions:

® 50:50: Two randomly selected incorrect answers are eliminated
® Phone a Friend: The contestant calls a friend and is given 30 seconds to discuss

® Ask the Audience: Audience members each vote on the answer they think is correct

s

® Which lifeline has the highest chance of producing the correct answer?

Why?
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Ensembling

At the Grinnell Walmart, consider the grocery section (south side of the store, to the left
when you walk in). Write your answer to the following question on a sheet of paper. Do
not consult your neighbor:
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Ensembling

At the Grinnell Walmart, consider the grocery section (south side of the store, to the left
when you walk in). Write your answer to the following question on a sheet of paper. Do
not consult your neighbor:

® How many grocery aisles are there?
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At the Grinnell Walmart, consider the grocery section (south side of the store, to the left
when you walk in). Write your answer to the following question on a sheet of paper. Do
not consult your neighbor:

® How many grocery aisles are there?

® |n fact, there are 28 grocery aisles.
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Ensembling

At the Grinnell Walmart, consider the grocery section (south side of the store, to the left
when you walk in). Write your answer to the following question on a sheet of paper. Do
not consult your neighbor:

® How many grocery aisles are there?
® |n fact, there are 28 grocery aisles.

® A survey of 30 current STEM students in STA 209 were asked the same question.

® The average value of their guess was 28.4, with standard deviation of 16.2
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At the Grinnell Walmart, consider the grocery section (south side of the store, to the left
when you walk in). Write your answer to the following question on a sheet of paper. Do
not consult your neighbor:

® How many grocery aisles are there?
® |n fact, there are 28 grocery aisles.

® A survey of 30 current STEM students in STA 209 were asked the same question.

® The average value of their guess was 28.4, with standard deviation of 16.2

® The rMSE for individual students was 15.9.
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Ensembling

At the Grinnell Walmart, consider the grocery section (south side of the store, to the left
when you walk in). Write your answer to the following question on a sheet of paper. Do
not consult your neighbor:

® How many grocery aisles are there?
® |n fact, there are 28 grocery aisles.

® A survey of 30 current STEM students in STA 209 were asked the same question.

® The average value of their guess was 28.4, with standard deviation of 16.2

The rMSE for individual students was 15.9.

® However, the rMSE for the class was only 0.4.
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Ensembling

At the Grinnell Walmart, consider the grocery section (south side of the store, to the left
when you walk in). Write your answer to the following question on a sheet of paper. Do
not consult your neighbor:

® How many grocery aisles are there?
® |n fact, there are 28 grocery aisles.

® A survey of 30 current STEM students in STA 209 were asked the same question.

® The average value of their guess was 28.4, with standard deviation of 16.2

The rMSE for individual students was 15.9.
® However, the rMSE for the class was only 0.4.

® \What factors about the class would cause such a drastic reduction in rMSE?
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Ensemble Methods

® Suppose we have m different models to predict Y based on Xi,..., X,. Suppose Y is
the prediction made by the ith model.
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Ensemble Methods

® Suppose we have m different models to predict Y based on Xi,..., X,. Suppose Y is
the prediction made by the ith model.

® A simple ensemble model makes a prediction Y as the weighted average of the
predictions from each model:

\A/:WﬂA/l—f—---—&—Wm\A/m where w1 +...wn =1, w; >0
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® Suppose we have m different models to predict Y based on Xi,..., X,. Suppose Y is
the prediction made by the ith model.

® A simple ensemble model makes a prediction Y as the weighted average of the
predictions from each model:

\A/:WﬂA/l—f—---—&—Wm\A/m where w1 +...wn =1, w; >0

® Advantages of ensemble models?
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® Suppose we have m different models to predict Y based on Xi,..., X,. Suppose Y is
the prediction made by the ith model.

® A simple ensemble model makes a prediction Y as the weighted average of the
predictions from each model:

\A/:WﬂA/l—f—---—&—Wm\A/m where w1 +...wn =1, w; >0

® Advantages of ensemble models?
® Significantly more flexible than a single model
® More efficient than single model

® More resilient against model-building bias
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Ensemble Methods

® Suppose we have m different models to predict Y based on Xi,..., X,. Suppose Y is
the prediction made by the ith model.

® A simple ensemble model makes a prediction Y as the weighted average of the
predictions from each model:

\A/:WﬂA/l—f—---—&—Wm\A/m where w1 +...wn =1, w; >0

Advantages of ensemble models?
® Significantly more flexible than a single model
® More efficient than single model
® More resilient against model-building bias
® Disadvantages?
® Making predictions is more computationally expensive
® Favors models with low test time

® Diminishing returns on the number models that can be incorporated in ensemble
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Bootstrapping

® Many occasions where it would be useful to have multiple samples from a population:
® Estimating standard errors of a statistic
® Creating confidence intervals to estimate a parameter

® Estimating variability in test RMSE
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Bootstrapping

® Many occasions where it would be useful to have multiple samples from a population:
® Estimating standard errors of a statistic
® Creating confidence intervals to estimate a parameter
® Estimating variability in test RMSE

® However, subsetting existing sample to create many smaller samples is problematic:
® Diminishes ability to build accurate models, since less data is used

® Variability in statistics depends on sample size
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® Many occasions where it would be useful to have multiple samples from a population:
® Estimating standard errors of a statistic
® Creating confidence intervals to estimate a parameter
® Estimating variability in test RMSE

® However, subsetting existing sample to create many smaller samples is problematic:
® Diminishes ability to build accurate models, since less data is used
® Variability in statistics depends on sample size

® |nstead, we create bootstrap samples by sampling with replacement from the original
sample a number of times equal to the original sample size
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Bootstrapping

® Many occasions where it would be useful to have multiple samples from a population:
® Estimating standard errors of a statistic
® Creating confidence intervals to estimate a parameter
® Estimating variability in test RMSE

® However, subsetting existing sample to create many smaller samples is problematic:
® Diminishes ability to build accurate models, since less data is used
® Variability in statistics depends on sample size

® |nstead, we create bootstrap samples by sampling with replacement from the original
sample a number of times equal to the original sample size

® Since we sample with replacement, some observations from original sample are included
more than once while others are omitted, which introduces a source of variability

® Bootstrap sample is same size as original, and so can be used to estimate variability in
statistic

April 23rd, 2024
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Bootstrap Visualization

Population Bootstrap Samples
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Bootstrap Sample Computations

Suppose we have a sample with 4 unique observations {x1, x2, x3, x4} and create a bootstrap
sample.

® What is the probability that xj is not the 1st element in the bootstrap sample? What is the
probability that it is not the 2nd?
® What is the probability that x; is not in the bootstrap sample at all?

® What is the probability that x, is not in the bootstrap sample?
Now suppose we have n unique observations {xi,...,xn} and we create a bootstrap sample.

® What is the probability that xj is not in the bootstrap sample?

® What is the probability that an arbitrary observation x; is not in the bootstrap sample?

What happens to the probability that an arbitrary observation is not in the sample, as n goes to
infinity?

Prof Wells (STA 295: Stat Learning) Bagging and Random Forests April 23rd, 2024



Bagging
0000800000000

Bootstrap Sample Computations Solutions

Suppose we have a sample with 4 unique observations {x1, x2, x3, x4} and create a bootstrap
sample.

® What is the probability that x; is not the 1st element in the bootstrap sample? What is the
probability that it is not the 2nd? 1 —

® What is the probability that x; is not in the bootstrap sample at all? (1 — ;11)4

. . . . 1\4
® What is the probability that xz is not in the bootstrap sample? (1 — Z)
Now suppose we have n unique observations {x1,...,xs} and we create a bootstrap sample.

® What is the probability that x; is not in the bootstrap sample? (1 — %)”
® What is the probability that an arbitrary observation x; is not in the bootstrap sample?
1
(1—2)"
What happens to the probability that an arbitrary observation is not in the sample, as n goes to
n

infinity? lim (1— =) =e!
n—oo n
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Bagging

Suppose we only have one training set, but still want to build an ensemble of regression
tree models. How can we do it?
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Suppose we only have one training set, but still want to build an ensemble of regression
tree models. How can we do it?

® Bagging (Bootstrap aggregation) was one of the earliest ensemble techniques
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Suppose we only have one training set, but still want to build an ensemble of regression
tree models. How can we do it?

® Bagging (Bootstrap aggregation) was one of the earliest ensemble techniques

To create a bagged model, create many bootstrap samples from the original training set,
and fit a decision tree to each. Average the resulting predictions.
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tree models. How can we do it?

® Bagging (Bootstrap aggregation) was one of the earliest ensemble techniques

To create a bagged model, create many bootstrap samples from the original training set,
and fit a decision tree to each. Average the resulting predictions.

Why?
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Bagging

Suppose we only have one training set, but still want to build an ensemble of regression
tree models. How can we do it?

® Bagging (Bootstrap aggregation) was one of the earliest ensemble techniques

To create a bagged model, create many bootstrap samples from the original training set,
and fit a decision tree to each. Average the resulting predictions.

Why?

® Recall that decision trees tend to have high variance. But averaging the results of
independent (or weakly dependent) variables decreases variance

® Think about the Central Limit Theorem:

® For large n, X is approximately Normal, with mean 1 and standard deviation %
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Bagging

Suppose we only have one training set, but still want to build an ensemble of regression
tree models. How can we do it?

® Bagging (Bootstrap aggregation) was one of the earliest ensemble techniques

To create a bagged model, create many bootstrap samples from the original training set,
and fit a decision tree to each. Average the resulting predictions.

Why?

® Recall that decision trees tend to have high variance. But averaging the results of
independent (or weakly dependent) variables decreases variance

® Think about the Central Limit Theorem:

® For large n, X is approximately Normal, with mean 1 and standard deviation %

® Unlike a single tree model, we do not prune (we instead control variance by averaging)
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Test Error for Bagged Models

® Previously, we showed that an individual observation has probability e~ ~ 0.368 of
not appearing in a bootstrap sample.
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® Previously, we showed that an individual observation has probability e~ ~ 0.368 of
not appearing in a bootstrap sample.

® For each bootstrap, approximately 1/3 of observations are not included (called
out-of-bag observations)
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Test Error for Bagged Models

® Previously, we showed that an individual observation has probability e~ ~ 0.368 of
not appearing in a bootstrap sample.

® For each bootstrap, approximately 1/3 of observations are not included (called
out-of-bag observations)

® The out-of-bag observations can be used as a natural validation set for the bootstrap
model.
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Test Error for Bagged Models

® Previously, we showed that an individual observation has probability e~ ~ 0.368 of
not appearing in a bootstrap sample.

® For each bootstrap, approximately 1/3 of observations are not included (called
out-of-bag observations)

® The out-of-bag observations can be used as a natural validation set for the bootstrap
model.

® \We get an overall estimate of test MSE for the bagged model by averaging the MSE
of each bootstrap model on its out-of-bag observations
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A Bag of Trees

We return to the pdxTrees data set, this time expanding both our data set size and

number of predictors:
names (my_pdxTrees)

## [1] "DBH" "Condition"

## [3] "Tree_Height" "Crown_Width_NS"

## [5] "Crown_Width_EW" "Crown_Base_Height"
## [7] "Functional_Type" "Mature_Size"

## [9] "Carbon_Sequestration_1b"
dim(my_pdxTrees)

## [1] 3015 9

set.seed(1)

library(rsample)

my_pdxTrees_split <- initial_split(my_pdxTrees )
my_pdxTrees_train <- training(my_pdxTrees_split)
my_pdxTrees_test <- testing(my_pdxTrees_split)
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A Bag of Trees

We return to the pdxTrees data set, this time expanding both our data set size and

number of predictors:
names (my_pdxTrees)

## [1] "DBH" "Condition"

## [3] "Tree_Height" "Crown_Width_NS"

## [5] "Crown_Width_EW" "Crown_Base_Height"
## [7] "Functional_Type" "Mature_Size"

## [9] "Carbon_Sequestration_1b"
dim(my_pdxTrees)

## [1] 3015 9

set.seed(1)

library(rsample)

my_pdxTrees_split <- initial_split(my_pdxTrees )
my_pdxTrees_train <- training(my_pdxTrees_split)
my_pdxTrees_test <- testing(my_pdxTrees_split)

® Can we improve on our previous model predicting Carbon_Sequestration_lb, now
using more data and more predictors?
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Bagged pdXTrees

® |et's get a few bootstrap samples using rsample:
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Bagged pdXTrees

® |et's get a few bootstrap samples using rsample:

library(rsample)
set.seed(1115)
pdx_bootstrap <- bootstraps(my_pdxTrees_train, times = 4)
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® |et's get a few bootstrap samples using rsample:

library(rsample)
set.seed(1115)
pdx_bootstrap <- bootstraps(my_pdxTrees_train, times = 4)

® And now build trees on each:
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Bagged pdXTrees

® |et's get a few bootstrap samples using rsample:
library(rsample)
set.seed(1115)
pdx_bootstrap <- bootstraps(my_pdxTrees_train, times = 4)

® And now build trees on each:
library(rpart)
get_tree <- function(split){
bootstrap_sample <- analysis(split)
model <- rpart(Carbon_Sequestration_lb ~., data = bootstrap_sample)
}
pdx_bootstrap$model <- map(pdx_bootstrap$splits, get_tree)
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A few trees
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Performance

® | et's get predictions for each bootstrap:
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® | et's get predictions for each bootstrap:
get_predictions <- function(model){
predictions <- predict(model, my_pdxTrees_test)
data.frame(obs = my_pdxTrees_test$Carbon_Sequestration_lb, preds = predictions)

}
pdx_bootstrap$predictions <- map(pdx_bootstrap$model, get_predictions)
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® | et's get predictions for each bootstrap:
get_predictions <- function(model){
predictions <- predict(model, my_pdxTrees_test)
data.frame(obs = my_pdxTrees_test$Carbon_Sequestration_lb, preds = predictions)

}
pdx_bootstrap$predictions <- map(pdx_bootstrap$model, get_predictions)

® And calculate rmse on each using yardstick
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Performance

® Let's get predictions for each bootstrap:
get_predictions <- function(model){

predictions <- predict(model, my_pdxTrees_test)

data.frame(obs = my_pdxTrees_test$Carbon_Sequestration_lb, preds = predictions)
}
pdx_bootstrap$predictions <- map(pdx_bootstrap$model, get_predictions)

® And calculate rmse on each using yardstick

library(yardstick)
results <- map_dfr(pdx_bootstrap$predictions, rmse, obs, preds)
results

## # A tibble: 4 x 3

## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 rmse standard 14.0
## 2 rmse standard 14.3
## 3 rmse standard 14.3
## 4 rmse standard 13.1

mean(results$.estimate)

## [1] 13.89024
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Variation in Model Predictions

® How do individual tree predictions compare?
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Variation in Model Predictions

® How do individual tree predictions compare?

## # A tibble: 6 x 5

## # Rowwise:

##  treel tree2 tree3 tree4 bagged
##  <dbl> <dbl> <dbl> <dbl> <dbl>

## 1 49.0 30.4 52.2 32.5 41.0
## 2 34.7 38.0 43.3 32.8 37.2
## 3 56.8 84.0 67.6 72.9 70.3
## 4 30.6 46.6 38.8 37.8 38.4
## 5 56.8 65.7 67.6 72.9 65.7
## 6 56.8 84.0 89.1 72.9 75.7
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Variation in Model Predictions

® How do individual tree predictions compare?

## # A tibble: 6 x 5

## # Rowwise:

##  treel tree2 tree3 tree4 bagged
##  <dbl> <dbl> <dbl> <dbl> <dbl>

## 1 49.0 30.4 52.2 32.5 41.0
## 2 34.7 38.0 43.3 32.8 37.2
## 3 56.8 84.0 67.6 72.9 70.3
## 4 30.6 46.6 38.8 37.8 38.4
## 5 56.8 65.7 67.6 72.9 65.7
## 6 56.8 84.0 89.1 72.9 75.7

® How does the bagged model RMSE compare to each individual tree's RMSE?
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Variation in Model Predictions

® How do individual tree predictions compare?

## # A tibble: 6 x 5

## # Rowwise:

##  treel tree2 tree3 tree4 bagged
##  <dbl> <dbl> <dbl> <dbl> <dbl>

## 1 49.0 30.4 52.2 32.5 41.0

## 2 34.7 38.0 43.3 32.8 37.2

## 3 56.8 84.0 67.6 72.9 70.3

## 4 30.6 46.6 38.8 37.8 38.4

## 5 56.8 65.7 67.6 72.9 65.7

## 6 56.8 84.0 89.1 72.9 75.7
[ ]

How does the bagged model RMSE compare to each individual tree's RMSE?

## # A tibble: 5 x 4
## model .metric .estimator .estimate

## <chr> <chr> <chr> <dbl>
## 1 tree 1 rmse standard 14.0
## 2 tree 2 rmse standard 14.3
## 3 tree 3 rmse standard 14.3
## 4 tree 4 rmse standard 13.1
## 5 bagged rmse standard 12.3
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Variation in Model Predictions

##
##
##
##
##
##
##
##
##
##

##
##
##
##
##
##
##
##

OO WN -

How do individual tree predictions compare?

A tibble: 6 x 5

Rowwise:

treel tree2 tree3 tree4 bagged
<dbl> <dbl> <dbl> <dbl> <dbl>

49.0 30.4 52.2 32.5 41.0
34.7 38.0 43.3 32.8 37.2
56.8 84.0 67.6 72.9 70.3
30.6 46.6 38.8 37.8 38.4
56.8 65.7 67.6 72.9 65.7
56.8 84.0 89.1 72.9 75.7

How does the bagged model RMSE compare to each individual tree's RMSE?

A tibble: 5 x 4
model .metric .estimator .estimate

<chr> <chr> <chr> <dbl>
tree 1 rmse standard 14.0
tree 2 rmse standard 14.3
tree 3 rmse standard 14.3
tree 4 rmse standard 13.1
bagged rmse standard 12.3

Note that the RMSE for the bagged tree is NOT simply the average RMSE. It is
significantly lower!
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The more trees the merrier?

If 4 trees improved performance over 1, what if we bagged 10 trees? 1007

RMSE of Bagged Tree, Based on Number of Trees Included

RMSE

0 50 100 150 200
Number of Trees
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The more trees the merrier?

If 4 trees improved performance over 1, what if we bagged 10 trees? 1007

RMSE of Bagged Tree, Based on Number of Trees Included
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® Greatest gains by adding a small number of additional trees

® Moderately small gains thereafter
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Further Performance Improvements

Suppose we have m ensemble models built from the same data set and that it turns out
that all m models are very similar.
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Further Performance Improvements

Suppose we have m ensemble models built from the same data set and that it turns out
that all m models are very similar.

® Do we expect the ensemble model to have high or low variance?
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Further Performance Improvements

Suppose we have m ensemble models built from the same data set and that it turns out
that all m models are very similar.

® Do we expect the ensemble model to have high or low variance?

® High variance (since the models are very correlated)
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Further Performance Improvements

Suppose we have m ensemble models built from the same data set and that it turns out
that all m models are very similar.

® Do we expect the ensemble model to have high or low variance?
® High variance (since the models are very correlated)

® When bagging trees, if one predictor accounts for large amount of deviation in the
response, it will usually be selected as the first split (regardless of the bootstrap
sample used)
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Further Performance Improvements

Suppose we have m ensemble models built from the same data set and that it turns out
that all m models are very similar.

® Do we expect the ensemble model to have high or low variance?
® High variance (since the models are very correlated)

® When bagging trees, if one predictor accounts for large amount of deviation in the

response, it will usually be selected as the first split (regardless of the bootstrap
sample used)

® To artificially increase the variety among trees, we randomly restrict which predictors
can be used at each split point.
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Further Performance Improvements

Suppose we have m ensemble models built from the same data set and that it turns out
that all m models are very similar.

® Do we expect the ensemble model to have high or low variance?
® High variance (since the models are very correlated)

® When bagging trees, if one predictor accounts for large amount of deviation in the
response, it will usually be selected as the first split (regardless of the bootstrap
sample used)

® To artificially increase the variety among trees, we randomly restrict which predictors
can be used at each split point.

® Although counterintuitive, this restriction tends to increase accuracy of the ensemble
by breaking correlations among the participant trees
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Random Forests

To create a random forest:

@ Select the number of models m to build and a number of predictors k to use at each
step t

® Generate a bootstrap sample for each model

® Build a tree on the bootstrap sample where at each step, a random selection of k of
the p predictors can be used (independent of prior predictors selected)

@ Aggregate the models to create an ensemble model.
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Random Forests

To create a random forest:

@ Select the number of models m to build and a number of predictors k to use at each
step t

® Generate a bootstrap sample for each model

® Build a tree on the bootstrap sample where at each step, a random selection of k of
the p predictors can be used (independent of prior predictors selected)

@ Aggregate the models to create an ensemble model.

Advantages of the random forest?
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Random Forests

To create a random forest:

@ Select the number of models m to build and a number of predictors k to use at each
step t

® Generate a bootstrap sample for each model

® Build a tree on the bootstrap sample where at each step, a random selection of k of
the p predictors can be used (independent of prior predictors selected)

@ Aggregate the models to create an ensemble model.

Advantages of the random forest?

® |ndividual models are less correlated, so ensemble has lower variance

® Each tree is quicker to build (why?)
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Random Forests

To create a random forest:

@ Select the number of models m to build and a number of predictors k to use at each
step t

® Generate a bootstrap sample for each model

® Build a tree on the bootstrap sample where at each step, a random selection of k of
the p predictors can be used (independent of prior predictors selected)

@ Aggregate the models to create an ensemble model.

Advantages of the random forest?

® |ndividual models are less correlated, so ensemble has lower variance
® Each tree is quicker to build (why?)

Disadvantages?
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Random Forests

To create a random forest:

@ Select the number of models m to build and a number of predictors k to use at each
step t

® Generate a bootstrap sample for each model

® Build a tree on the bootstrap sample where at each step, a random selection of k of
the p predictors can be used (independent of prior predictors selected)

@ Aggregate the models to create an ensemble model.

Advantages of the random forest?
® Individual models are less correlated, so ensemble has lower variance
® Each tree is quicker to build (why?)

Disadvantages?

® Difficult to interpret

® Theoretically properties less well-studied (possible MAP project!)
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Hand-made Random Forests

| have a data set with categorical response Y with two, with 3 quantitative predictors and
with 50 observations.

Our goal is to build, as a class, a random forest for predicting Y.

Each table will be tasked with building (by hand) a single decision tree for predicting
Y.

Each table will be randomly assigned 2 of the 3 predictors, and will have a bootstrap
sample of the 50 observations.

Each table will be given a scatterplot showing the relationship between their 2
predictors and the response, on their bootstrap sample.

Each table should work together to decide where to make cuts in the scatterplot to
create a decision tree with between 3 and 6 leaves (group's choice)

| will give each group the same 10 test points to classify. And as a class, we will
average the predictions to create a random forest prediction.
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Random Forest in R

® To create both bagged trees and random forests, we use the randomForest function
in the randomForest package in R:
library(randomForest)

rfmodel <- randomForest(Carbon_Sequestration_lb ~ ., data = my_pdxTrees_train)
rfmodel

##

## Call:

## randomForest(formula = Carbon_Sequestration_lb ~ ., data = my_pdxTrees_train)
## Type of random forest: regression

## Number of trees: 500

## No. of variables tried at each split: 2

##

## Mean of squared residuals: 112.2864

## % Var explained: 85.74
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Modifications

We can control how many trees are generated with ntree and the number of predictors at
each split with mtry
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Modifications

We can control how many trees are generated with ntree and the number of predictors at
each split with mtry

® By default, randomForest uses p/3 predictors for regression and /p predictors for
classification
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Modifications

We can control how many trees are generated with ntree and the number of predictors at
each split with mtry

® By default, randomForest uses p/3 predictors for regression and /p predictors for
classification

set.seed(1)
rfmodel2 <- randomForest(Carbon_Sequestration_lb ~ ., data = my_pdxTrees_train,
ntree = 10, mtry = 5)

rfmodel2

##

## Call:

## randomForest(formula = Carbon_Sequestration_lb ~ ., data = my_pdxTrees_train, ntree =
## Type of random forest: regression

## Number of trees: 10

## No. of variables tried at each split: 5

##

## Mean of squared residuals: 106.4475

## % Var explained: 86.48
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Modifications

We can control how many trees are generated with ntree and the number of predictors at
each split with mtry

® By default, randomForest uses p/3 predictors for regression and /p predictors for
classification

set.seed(1)
rfmodel2 <- randomForest(Carbon_Sequestration_lb ~ ., data = my_pdxTrees_train,
ntree = 10, mtry = 5)

rfmodel2

##

## Call:

## randomForest(formula = Carbon_Sequestration_lb ~ ., data = my_pdxTrees_train, ntree =
## Type of random forest: regression

## Number of trees: 10

## No. of variables tried at each split: 5

##

## Mean of squared residuals: 106.4475

## % Var explained: 86.48

How can we create a bagged model using the randomForest function?
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Modifications

We can control how many trees are generated with ntree and the number of predictors at
each split with mtry

® By default, randomForest uses p/3 predictors for regression and /p predictors for
classification

set.seed(1)
rfmodel2 <- randomForest(Carbon_Sequestration_lb ~ ., data = my_pdxTrees_train,
ntree = 10, mtry = 5)

rfmodel2

##

## Call:

## randomForest(formula = Carbon_Sequestration_lb ~ ., data = my_pdxTrees_train, ntree =
## Type of random forest: regression

## Number of trees: 10

## No. of variables tried at each split: 5

##

## Mean of squared residuals: 106.4475

## % Var explained: 86.48

How can we create a bagged model using the randomForest function?

® Set mtry= p, where p is the total number predictors available
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Making predictions

® So you have your randomForest model. How do you make predictions?

my_preds<- predict(rfmodel, my_pdxTrees_test)
results <- data.frame(obs = my_pdxTrees_test$Carbon_Sequestration_lb, preds = my_preds)

results %>% head()

## obs preds
## 1 39.0 38.85781
## 2 110.2 66.09302
## 3 61.2 75.53011
## 4 34.0 33.41863
## 5 75.4 51.02538
## 6 96.1 82.35864
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Variable Importance

Bagging and Random Forests increase prediction accuracy by reducing variance of the
model.

Prof Wells (STA 295: Stat Learn g and Random Forests April 23rd, 2024



Bagging and Random Forests in R
[ee]ele] Tele]

Variable Importance

Bagging and Random Forests increase prediction accuracy by reducing variance of the
model.

® But the cost comes in interpretability We no longer have a single decision tree to
follow to reach our prediction.
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Variable Importance

Bagging and Random Forests increase prediction accuracy by reducing variance of the
model.

® But the cost comes in interpretability We no longer have a single decision tree to
follow to reach our prediction.

® How can we determine which predictors are most influential?
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Variable Importance

Bagging and Random Forests increase prediction accuracy by reducing variance of the
model.

® But the cost comes in interpretability We no longer have a single decision tree to
follow to reach our prediction.

® How can we determine which predictors are most influential?

One possibility is to record the total amount of RSS/Purity that is decreased due to splits
of the given predictor, averaged across all trees in the random forest.
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Importance in R

importance (rfmodel)

## IncNodePurity
## DBH 507862.05
## Condition 54821.17
## Tree_Height 208750.74
## Crown_Width_NS 309930.48
## Crown_Width_EW 325846.81
## Crown_Base_Height 69137.26
## Functional_Type 170538.17
## Mature_Size 42785.73
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importance (rfmodel)

##
##
##
##
##
##
##
##
##

DBH

Condition
Tree_Height
Crown_Width_NS
Crown_Width_EW
Crown_Base_Height
Functional_Type
Mature_Size
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IncNodePurity
507862.05
54821.17
208750.74
309930.48
325846.81
69137.26
170538.17
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varImpPlot (rfmodel)
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rfmodel

DBH
Crown_Width_EW
Crown_Width_NS
Tree_Height
Functional_Type
Crown_Base_Height o
Condition o

Mature_Size o
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Importance in R

varImpPlot (rfmodel)
importance (rfmodel) rimodel
# IncNodePurity oer °
## DBH 507862.05 Crown_Width EW °
## Condition 54821.17 Crown_Width_NS o
## Tree_Height 208750.74 Tree_Height o
## Crown_Width_NS 309930.48 B
## Crown_Width_EW 325846.81 Functonal_Type °
## Crown_Base_Height 69137.26 Crown_Base_Height °
## Functional_Type 170538.17 Condition °
## Mature_Size 42785.73 .

Mature_Size o

® For regression trees, node impurity is calculated using RSS.

® For classification trees, node impurity is calculated using Gini Index.
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