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Outline

• Review elements of probability theory
• Discuss Naive Bayes theory and motivation
• Implement Naive Bayes in R
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Section 1

Probability Theory
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Probability Theory Generative Models Naive Bayes

Bayes Rule

Bayes Rule: For any two events E and B,

P(E |B) = P(B|E)P(E)
P(B)

• P(E) is called the prior probability of E and represents our initial beliefs about the
chances that event E occurs.

• Suppose B is an event that we observe occurring.
• P(E |B) is called the posterior probability of E and represents our updated beliefs

about the chances that event E occurs, knowing that event B occurred.
• P(B|E)/P(B) is called the Bayes Factor and represents the likelihood that B occurs

given E occurred relative to the probability of B occurring among all possible
scenarios.

• Bayes Rule follows from the definition of conditional probability:

P(E |B) = P(E and B)
P(B) P(B|E) = P(E and B)

P(E)
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Probability Theory Generative Models Naive Bayes

Law of Total Probability

Bayes Rule is most often combined with another powerful probability result:

Suppose E1, E2, . . . , Ek are a list of events that are:
• mutually exclusive: P(Ei and Ej) = 0
• exhaustive: P(E1) + P(E2) · · · + P(Ek) = 1

• Example: Suppose we have two coins: one coin is double-headed, and the other coin is a
fair coin. One coin is selected at random. Let E1 be the event the double-headed coin is
selected, and let E2 be the event the fair coin is selected.

Law of Total Probability: For any event B,

P(B) = P(F |E1)P(E1) + P(F |E2)P(E2) + · · · + P(F |Ek)P(Ek)

Example
Suppose we randomly select one of the two coins above. What is the probability the coin
lands heads?

P(Heads) = P(Heads|E1)P(E1) + P(Heads|E2)P(E2) = 1 ·
1
2

+
1
2

·
1
2

=
3
4
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Bayes Rule + Law of Total Probability

Suppose we randomly select on of the two coins, flip it, and observe that the coin lands
heads. What is the probability that the selected coin was double-headed?

• The prior probability of selecting the double-headed coin is P(A1) = 1
2 .

• Is it still reasonable to believe there is a 50% chance of having selected the
double-headed coin, given we observed heads?

• Observing a heads is more consistent with the scenario where we selected the
double-headed coin, than it is in the scenario where we selected the fair coin.

• If the coin was double-headed, we would also flip heads. But if we had the fair coin, we
would only flip heads 50 of the time.

Using Bayes Rule:

P(E1|Heads) =
P(Heads|E1)P(E1)

P(Heads)
=

P(Heads|E1)P(E1)
P(Heads|E1)P(E1) + P(Heads|E2)P(A2)

=
1

3/4
·

1
2

=
2
3

• That is, the posterior probability P(E1|Heads) = 2
3 is larger than the prior probability

P(A1) = 1
2 .
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Probability Theory Generative Models Naive Bayes

The Multiplication Rule

• Events E1, . . . , Ek are independent if knowing that one occurred does not make it
more or less likely that any of the others occurred.

• Suppose we roll 2 dice. Let E1 be the event that the first is a 6, and let E2 be the event
that the second is an even number. Then E1, E2 are independent, since the roll of the
first die has no influence on the roll of the second die.

Multiplication Rule: If events E1, . . . , Ek are independent, then

P(E1 and E2 and . . . and Ek) = P(E1) · P(E2) · · · P(Ek)
• In the dice example above, the probability that a 6 is rolled on the first die and an

odd number is rolled on the second is

P(E1 and E2) = P(E1) · P(E2) =
1
6

·
1
2

=
1
12

• If events are dependent then the multiplication rule does not hold. At best,

P(E1 and E2) = P(E1|E2) · P(E2)

• In order to calculate the probability both occur, we need to known about the
relationship between the two events.
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Section 2

Generative Models
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Probability Models
For classification problem, average test error rate is minimized using the Bayes’ classifier:

g(x0) = argmaxAj P(Y = Aj | X = x0)

• i.e. predict the class that has the greatest conditional probability, given the data.

Both KNN and Logistic regression attempt to directly estimate the conditional probability
P(Y = Aj | X):

• Logistic regression:

P(Y = Aj | X) ≈ eβ0+β1X1+···+βpXp

1 + eβ0+β1X1+···+βpXp

• KNN:
P(Y = Aj | X) ≈ 1

K
∑
i∈N0

I(yi = Aj)

Alternatively, we might instead model the opposite conditional probability: P(X |Y = Aj)
• This is the distribution of the predictors, within each class of the response.
• Our goal would then be to reverse this probability to get P(Y = Ai |X).
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P(Y = Aj | X) ≈ 1

K
∑
i∈N0

I(yi = Aj)

Alternatively, we might instead model the opposite conditional probability: P(X |Y = Aj)
• This is the distribution of the predictors, within each class of the response.
• Our goal would then be to reverse this probability to get P(Y = Ai |X).
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Probability Theory Generative Models Naive Bayes

Bayes Rule and Law of Total Probability, Again

Goal: Estimate P(Y = Aj |X).
Method: estimate P(X |Y = Aj) for all levels of Aj , and combine them using Bayes Rule
and Law of Total Probability:

P(Y = Aj |X) =
P(X |Y = Aj )

P(X)
=

P(X |Y = Aj )∑
i P(X |Y = Ai )P(Y = Ai )

• Suppose X represents a single predictor. One model assumes that X is normally distributed
within each class of Y .

• To estimate P(X |Y = Ai ), we compute the mean and standard deviation of X within
each level of Y

• Then we use the formula for probabilities from the Normal distribution (of the estimated
mean and variance) to calculate P(X |Y = Ai ) for each Ai .

• We also estimate the prior probabilities P(Y = Ai ) using the proportion of observations in
each class of Y (ignoring the predictor X).
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Probability Theory Generative Models Naive Bayes

Simulation

Consider a binary numeric response variable Y and a single quantitative predictor X .

• Suppose if Y = 0, then X ∼ N(1, 1) and if Y = 1, then X ∼ N(3, 2)
• Additionally, suppose P(Y = 0) = .75 and P(Y = 1) = .25.
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• What feature of the graph shows that P(Y = 0) = .75 and P(Y = 1) = .25?
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Probability Theory Generative Models Naive Bayes

Fit Model

We calculate estimates for the mean and standard deviation of X , within each level of Y ,
along with the proportion of observations within each level of Y :

sim_data %>% group_by(Y) %>% summarize(mean = mean(X), sd = sd(X), n_obs = n()) %>%
mutate(prop = n_obs/sum(n_obs))

## # A tibble: 2 x 5
## Y mean sd n_obs prop
## <chr> <dbl> <dbl> <int> <dbl>
## 1 0 0.828 1.03 75 0.75
## 2 1 3.43 1.78 25 0.25

• The Normal density function for data with mean µ and standard deviation σ is

f (x) =
1

√
2πσ2

exp
(

−
(x − µ)2

2σ2

)
• We can use this density formula, along with our estimates of µ, σ and P(Y = Aj), to

calculate
P(X |Y = Aj) · P(Y = Aj)

• And from this, using Bayes Rule, we can calculate P(Y = Aj |X).
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Probability Theory Generative Models Naive Bayes

Prediction

• Suppose we wish to classify a test point with X = 2.5
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• On the one hand, X = 2.5 is more likely when Y = 1 than when Y = 0.
• But on the other hand, in general, Y = 1 occurs much more frequently than $Y = 0 $.
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Probability Theory Generative Models Naive Bayes

Estimating Density

As X is a continuous variable, we can’t compute P(X = 2.5). But we can compute the
density functions at X = 2.5, which is the rate of generating data near x = 2.5.

• If Y = 1, then µ1 = 3.43 and σ1 = 1.78 and so

f1(2.5) =
1

√
2π · 1.782

exp
(

−
(2.5 − 3.43)2

2 · 1.782

)
= 0.196

• If Y = 0, then µ0 = 0.83 and σ0 = 1.03 and so

f0(2.5) =
1

√
2π · 1.032

exp
(

−
(2.5 − 0.83)2

2 · 1.032

)
= 0.104

• We are more likely to see data near X = 2.5 when Y = 1 than when Y = 0. However,
we also need to take into account the overall chance that Y = 1:

f1(2.5) · P(Y = 1) = 0.196 · 0.25 = 0.049 f0(2.5) · P(Y = 0) = 0.104 · 0.75 = 0.078

• Therefore, P(Y = 0|X = 2.5) > P(Y = 1|X = 2.5) since
f0(2.5)P(Y = 0)

f0(2.5)P(Y = 0) + f1(2.5)P(Y = 1)
>

f1(2.5) · P(Y = 0)
f0(2.5)P(Y = 0) + f1(2.5)P(Y = 1)
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Probability Theory Generative Models Naive Bayes

Extending to Multiple Predictors

The previous method works great with a single predictor. However, we run into difficulties
if we want to use multiple predictors.

• Estimating P(X1, X2, . . . , Xp|Y = Aj) can require immense amounts of data:
• We need to estimate not only the individual distributions of each Xi , but also estimate

all of the ≈ 2p relationships between the X ’s

• There are a few methods for overcoming this challenge:
• Discriminant Analysis (LDA / QDA) assumes that the only noteworthy relationship

between predictors is correlation. This reduces the problem to estimating ≈ p2

relationships

• Naive Bayes assumes that there are no noteworthy relationships among predictors.
We only need to estimate individual distributions for each predictor.

• We investigate only the latter. It turns out that the former produces models that are
very comparable to logistic regression.
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We only need to estimate individual distributions for each predictor.

• We investigate only the latter. It turns out that the former produces models that are
very comparable to logistic regression.
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Section 3

Naive Bayes
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Probability Theory Generative Models Naive Bayes

Naive Bayes?

Goal: Estimate P(Y = Aj |X1, X2, . . . , Xp).

Method: estimate P(X1, . . . , Xp|Y = Aj) for all levels of Aj , and combine them using
Bayes Rule and Law of Total Probability:

• The Naive Bayes model assumes that X1, . . . , Xp are independent, and so by the
multiplication rule:

P(X1, . . . , Xp |Y = Aj ) = P(X1|Y = Aj ) · P(X2|Y = Aj ) · · · P(Xp |Y = Aj )

• Each term P(Xi |Y = Aj) can be estimated individually:
• If Xi is continuous, we estimate P(Xi |Aj ) using a normal distribution model (as before)
• If Xi categorical, we estimate P(Xi |Aj ) by computing the proportion of observations in

each level of Xi , among all observations with Y = Aj .
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Why Naive Bayes

Why might we make such an unreasonable (Naive?) assumption about independence?

• All models are wrong. But some are useful.
• When we have many variables but few observations per variable, we often do not have

luxury of estimating a large number of relationships.
• We need simplifying assumptions (high bias, low variance)

• Naive Bayes can provide non-linear decision boundaries (trading one flexibility for
another)

• For model accuracy, the goal is correctly predicting the class of Y , not necessarily
estimating the probability that Y is in that class:

• Naive Bayes tends to produce woefully incorrect estimates of P(Y = Aj |X).
• But usually concurs with the prediction that would be made by the true probability

model

• Sometimes dependence among variables can “cancel out” in aggregate. I.e. error in
estimating P(X1|X2) can be cancelled by error in estimating P(X2|X3) and P(X1|X3).
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Naive Bayes in R

• We fit a Naive Bayes model using the naiveBayes function in the e1071 package:

library(e1071)
nb_mod <- naiveBayes(Y ~ X1 + X2, data = training_data)

• We make predictions for class using predict
my_preds <- predict(nb_mod, data = test_data)

• And we can obtain the naive bayes estimates for probabilities using:
my_probs<- predict(nb_mod, data = test_data, type = "raw")
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Titanic Again

How does Naive Bayes do on the Titanic data set explored previously?

• We look at some of the variables:
library(dplyr)
glimpse(Titanic)

## Rows: 1,313
## Columns: 10
## $ pclass <chr> "1st", "1st", "1st", "1st", "1st", "1st", "1st", "1st", "1st~
## $ survived <fct> 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, ~
## $ name <chr> "Allen, Miss Elisabeth Walton", "Allison, Miss Helen Loraine~
## $ age <dbl> 29.0000, 2.0000, 30.0000, 25.0000, 0.9167, 47.0000, 63.0000,~
## $ embarked <chr> "Southampton", "Southampton", "Southampton", "Southampton", ~
## $ home.dest <chr> "St Louis, MO", "Montreal, PQ / Chesterville, ON", "Montreal~
## $ room <chr> "B-5", "C26", "C26", "C26", "C22", "E-12", "D-7", "A-36", "C~
## $ ticket <chr> "24160 L221", NA, NA, NA, NA, NA, "13502 L77", NA, NA, NA, "~
## $ boat <chr> "2", NA, "(135)", NA, "11", "3", "10", NA, "2", "(22)", "(12~
## $ sex <chr> "female", "female", "male", "female", "male", "male", "femal~

• And break our data into test/training sets:
library(rsample)
set.seed(10)
Titanic_split <- initial_split(Titanic)
Titanic_train <- training(Titanic_split)
Titanic_test <- testing(Titanic_split)
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Probability Theory Generative Models Naive Bayes

Data Visualization
library(GGally)
Titanic_train %>% select(survived, age, pclass, embarked, sex) %>% ggpairs(aes(color = survived))
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Exploratory Analysis

• What trends are apparent among variables?
• Does it seem like predictors are independent, given values of the response?
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Fitting the Naive Bayes Model

• We first fit the model using age, pcclass, embarked and sex
nb_fit <- naiveBayes(survived ~ age + pclass + embarked + sex, data = Titanic_train)
nb_fit$tables

## age
## Y [,1] [,2]
## 0 31.73908 14.29293
## 1 30.15109 15.62311
## pclass
## Y 1st 2nd 3rd
## 0 0.1517451 0.1820941 0.6661608
## 1 0.4123077 0.2676923 0.3200000

## embarked
## Y Cherbourg Queenstown Southampton
## 0 0.18786127 0.07225434 0.73988439
## 1 0.31640625 0.03515625 0.64843750
## sex
## Y female male
## 0 0.1911988 0.8088012
## 1 0.7015385 0.2984615

• For quantitative variables, the first column is the predictor mean and the second is the
predictor standard deviation, within each response class.

• For categorical variables, the columns correspond to the proportions of that variable within
each response class.
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Predicting with Naive Bayes

Now, we make class predictions

my_preds <- predict(nb_fit, Titanic_test)
head(my_preds)

## [1] 0 0 0 0 0 1
## Levels: 0 1
my_probs <- predict(nb_fit, Titanic_test, type = "raw")
head(my_probs)

## 0 1
## [1,] 0.7184279 0.2815721
## [2,] 0.6976581 0.3023419
## [3,] 0.7110352 0.2889648
## [4,] 0.5752423 0.4247577
## [5,] 0.6976581 0.3023419
## [6,] 0.1192007 0.8807993

And create a results data frame
nb_results <- data.frame(obs = Titanic_test$survived, preds = my_preds, probs = my_probs)
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Probability Theory Generative Models Naive Bayes

Model Assessment

Compute accuracy, sensitivity and specificity:
library(yardstick)
my_metrics <- metric_set(accuracy, sensitivity, specificity)
my_metrics(nb_results, truth = obs, estimate = preds)

## # A tibble: 3 x 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 accuracy binary 0.799
## 2 sensitivity binary 0.980
## 3 specificity binary 0.5

• Overall, the model was moderately accurate
• The model was very good at correctly identifying true survivors (high sensitivity)
• But was not as good at correctly identifying true non-survivors (mediocre specificity)
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Probability Theory Generative Models Naive Bayes

ROC and AUC
roc_auc(nb_results, truth = obs, probs.1, event_level = "second")

## # A tibble: 1 x 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 roc_auc binary 0.850
autoplot( roc_curve(nb_results, truth = obs, probs.1, event_level = "second") )
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Probability Theory Generative Models Naive Bayes

Comparison

How does Naive Bayes compare to logistic regression?

my_glm <- glm(survived ~ age + pclass + embarked + sex, data = Titanic_train, family = "binomial")
glm_probs <- predict(my_glm, newdata = Titanic_test, type = "response")
glm_preds <- as.factor( ifelse(glm_probs > 0.5, 1, 0))
glm_results <- data.frame(obs = Titanic_test$survived, preds = glm_preds, probs = glm_probs)

## # A tibble: 8 x 4
## .metric .estimator .estimate model
## <chr> <chr> <dbl> <chr>
## 1 accuracy binary 0.813 logistic
## 2 sensitivity binary 0.929 logistic
## 3 specificity binary 0.691 logistic
## 4 roc_auc binary 0.897 logistic
## 5 accuracy binary 0.799 Naive Bayes
## 6 sensitivity binary 0.980 Naive Bayes
## 7 specificity binary 0.5 Naive Bayes
## 8 roc_auc binary 0.850 Naive Bayes

• Logistic regression beats Naive Bayes (except on sensitivity)
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Comparative ROC Curves
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