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Outline

In today’s class, we will. . .
• Perform some exploratory data analysis on a new data set
• Investigate algorithms for selecting good subsets of predictors
• Discuss ways to create and modify predictors

Prof Wells (STA 295: Stat Learning) Feature Selection and Engineering March 7th, 2024 2 / 42



Explaratory Data Analysis Subset Selection Other Selection Algorithms

Section 1

Explaratory Data Analysis
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Molecular Solubility

The solubility data set from the AppliedPredictiveModeling package contains
solubility and chemical structure for a sample of 1,267 different compounds.

library(AppliedPredictiveModeling)
data(solubility)

• The solubility of a compound indicates how easily it dissolves in a solvent (often
water), and is measured as the amount of solvent required to dissolve 1 part of the
compound.

• The less solvent required, the more soluble the compound.
• In the dataset, the log solubility is reported, since solubility spans many orders of

magnitude

• The data also contains 16 chemical count descriptors, such as “number of bonds” or
“number of bromine atoms”

• Finally, the data contains 4 continuous descriptors, such as “molecular weight” or
“surface area”

We are interested in determining solubility based on these 20 chemical descriptors.
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Pre-Processing

• The solubability actually consists of 4 data sets: solTestX, solTrainX,
solTestY, solTrainY

• The X and Y indicate the data is pre-divided into separate sets for predictors and
response.

• Additionally, data have already been partitioned into test and training sets (25 / 75)
• It will be easier to have predictors and response in the same set, so we’ll bind columns

together:
solTest <- cbind(solTestX, Solubility = solTestY)
solTrain <- cbind(solTrainX, Solubility = solTrainY)

• The data also contains 218 binary “fingerprints” for each compound indicating
presence of particular chemical substructure, each beginning with “FP”

• We’ll ignore these predictors for now.
library(dplyr)
solTest <- solTest %>% select(!starts_with("FP"))
solTrain <- solTrain %>% select(!starts_with("FP"))
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Distribution of Variables

• In our initial exploratory analysis, we will investigate the distribution of the response,
as well as correlations between the response and each quantitative predictor.

• We should do this using only the training set. (Why?)

• If we had categorical predictors, we could also look at side-by-side boxplots, and
compute means of the response within each level of the categorical predictor.

• But we don’t have any categorical variables in this data set

• We should also assess whether we have any missing values
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Response Histogram

ggplot(solTrain, aes(x = Solubility))+
geom_histogram(color = "white", fill = "steelblue")
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Response Summary Statistics

solTrain %>% summarize(
min = min(Solubility),
Q1 = quantile(Solubility, 0.25),
median = median(Solubility),
Q3 = quantile(Solubility, 0.75),
max = max(Solubility),
mean = mean(Solubility),
sd = sd(Solubility))

## min Q1 median Q3 max mean sd
## 1 -11.62 -3.955 -2.51 -1.36 1.58 -2.71857 2.046641
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Pairwise Scatterplot

It would be helpful to visualize the relationship between the response and each quantitative
variable

• We could individually code each plot (not too burdensome if there are only few
predictors).

• But with many predictors, that’s lots of redundant coding.
• Instead, we can make use of the pivot_longer function from tidyr:

solTrain %>% pivot_longer(-Solubility, names_to = "variables",
values_to = "value") %>%

ggplot(aes(x = value, y = Solubility ))+
geom_point()+

geom_smooth(se = F)+
facet_wrap(~variables, scales = "free")
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Pairwise Scatterplots
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Pairwise Scatterplots
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Correlation with Response

cor_values <- cor(solTrain[,-21], solTrain$Solubility)
# obtains correlations between each variable and the response
# stores results as a 1 x 20 matrix

cor_names <- rownames(cor_values)
# extracts names for each variable

cor_df <- data.frame(correlation = as.numeric(cor_values), variable = cor_names)
# creates data frame with correlations and variable names
# as.numeric coerces the cor_values matrix into a vector
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Explaratory Data Analysis Subset Selection Other Selection Algorithms

Correlation with Response

cor_df

## correlation variable
## 1 -0.629163885 MolWeight
## 2 -0.398943188 NumAtoms
## 3 -0.544646707 NumNonHAtoms
## 4 -0.420459121 NumBonds
## 5 -0.551457131 NumNonHBonds
## 6 -0.525248387 NumMultBonds
## 7 -0.149343282 NumRotBonds
## 8 0.001237051 NumDblBonds
## 9 -0.515883692 NumAromaticBonds
## 10 -0.204082828 NumHydrogen
## 11 -0.582761107 NumCarbon
## 12 0.102230176 NumNitrogen
## 13 0.130774566 NumOxygen
## 14 -0.091418407 NumSulfer
## 15 -0.504054819 NumChlorine
## 16 -0.504136055 NumHalogen
## 17 -0.488295986 NumRings
## 18 0.309022159 HydrophilicFactor
## 19 0.193769382 SurfaceArea1
## 20 0.143941883 SurfaceArea2

cor_df %>% arrange(desc(abs(correlation)))
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## 18 0.102230176 NumNitrogen
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## 20 0.001237051 NumDblBonds
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Explaratory Data Analysis Subset Selection Other Selection Algorithms

Correlation Matrix

• We now have a good idea about which variables are most strongly correlated with the
response

## correlation variable
## 1 -0.6291639 MolWeight
## 2 -0.5827611 NumCarbon
## 3 -0.5514571 NumNonHBonds
## 4 -0.5446467 NumNonHAtoms
## 5 -0.5252484 NumMultBonds

• But how do these variables relate to each other?

• We can use the ggcorr function from the GGally package to quickly create a visual
correlation matrix:

library(GGally)
ggcorr(solTrain, hjust = 1, size = 2, layout.exp = 5)

# hjust changes the position of the names
# size changes the size of names
# layout.exp expands the horizontal axis to prevent text clipping
# other options are possible (use ?ggcorr)
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Explaratory Data Analysis Subset Selection Other Selection Algorithms

Correlation Matrix
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Explaratory Data Analysis Subset Selection Other Selection Algorithms

Collinearity

• What are downsides of fitting the full model?

• Risk of overfitting
• Perfect linear relationship between some predictors
• Multicollinearity may lead to higher variance in model estimates, and hence, higher

variance in predictions

• Why should we fit the full model anyway?
• We can get a baseline for model performance (using cross-validation)
• We can identify possible problems using diagnostics
• We have the variables, so we may as well try to use them

full_mod <- lm(Solubility ~ ., data = solTrain)
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Explaratory Data Analysis Subset Selection Other Selection Algorithms

Model Summary
##
## Call:
## lm(formula = Solubility ~ ., data = solTrain)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.8499 -0.5963 0.0232 0.5842 2.7848
##
## Coefficients: (3 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.344876 0.149393 2.309 0.021189 *
## MolWeight -0.008074 0.001325 -6.093 1.61e-09 ***
## NumAtoms 0.275577 0.086182 3.198 0.001432 **
## NumNonHAtoms 1.536062 0.450948 3.406 0.000687 ***
## NumBonds -0.612747 0.127856 -4.792 1.92e-06 ***
## NumNonHBonds NA NA NA NA
## NumMultBonds -1.694110 0.321514 -5.269 1.70e-07 ***
## NumRotBonds -0.147637 0.026894 -5.490 5.19e-08 ***
## NumDblBonds 0.771793 0.234853 3.286 0.001053 **
## NumAromaticBonds 1.278539 0.277614 4.605 4.69e-06 ***
## NumHydrogen NA NA NA NA
## NumCarbon -0.650678 0.331825 -1.961 0.050187 .
## NumNitrogen -0.222086 0.373396 -0.595 0.552140
## NumOxygen -0.300338 0.424632 -0.707 0.479563
## NumSulfer 0.621244 0.298101 2.084 0.037432 *
## NumChlorine -0.374042 0.061636 -6.069 1.87e-09 ***
## NumHalogen -1.579937 0.459350 -3.440 0.000609 ***
## NumRings NA NA NA NA
## HydrophilicFactor 0.162663 0.073229 2.221 0.026570 *
## SurfaceArea1 0.047692 0.013827 3.449 0.000587 ***
## SurfaceArea2 -0.070007 0.013245 -5.285 1.56e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9044 on 933 degrees of freedom
## Multiple R-squared: 0.8082, Adjusted R-squared: 0.8047
## F-statistic: 231.3 on 17 and 933 DF, p-value: < 2.2e-16

NAs in the table mean we have a perfect
linear relationship among some of the
predictors

• As a result, R dropped the linearly
related variables.

• For better clarity, we should refit the
model without them
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Explaratory Data Analysis Subset Selection Other Selection Algorithms

Model Summary
##
## Call:
## lm(formula = Solubility ~ . - NumNonHBonds - NumHydrogen - NumRings,
## data = solTrain)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.8499 -0.5963 0.0232 0.5842 2.7848
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
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## NumChlorine -0.374042 0.061636 -6.069 1.87e-09 ***
## NumHalogen -1.579937 0.459350 -3.440 0.000609 ***
## HydrophilicFactor 0.162663 0.073229 2.221 0.026570 *
## SurfaceArea1 0.047692 0.013827 3.449 0.000587 ***
## SurfaceArea2 -0.070007 0.013245 -5.285 1.56e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9044 on 933 degrees of freedom
## Multiple R-squared: 0.8082, Adjusted R-squared: 0.8047
## F-statistic: 231.3 on 17 and 933 DF, p-value: < 2.2e-16

• None of the estimates or p-values
changed after refitting the model

• However, extraneous rows were
removed (and the table now fits on the
slide. Yay!)
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## MolWeight -0.008074 0.001325 -6.093 1.61e-09 ***
## NumAtoms 0.275577 0.086182 3.198 0.001432 **
## NumNonHAtoms 1.536062 0.450948 3.406 0.000687 ***
## NumBonds -0.612747 0.127856 -4.792 1.92e-06 ***
## NumMultBonds -1.694110 0.321514 -5.269 1.70e-07 ***
## NumRotBonds -0.147637 0.026894 -5.490 5.19e-08 ***
## NumDblBonds 0.771793 0.234853 3.286 0.001053 **
## NumAromaticBonds 1.278539 0.277614 4.605 4.69e-06 ***
## NumCarbon -0.650678 0.331825 -1.961 0.050187 .
## NumNitrogen -0.222086 0.373396 -0.595 0.552140
## NumOxygen -0.300338 0.424632 -0.707 0.479563
## NumSulfer 0.621244 0.298101 2.084 0.037432 *
## NumChlorine -0.374042 0.061636 -6.069 1.87e-09 ***
## NumHalogen -1.579937 0.459350 -3.440 0.000609 ***
## HydrophilicFactor 0.162663 0.073229 2.221 0.026570 *
## SurfaceArea1 0.047692 0.013827 3.449 0.000587 ***
## SurfaceArea2 -0.070007 0.013245 -5.285 1.56e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9044 on 933 degrees of freedom
## Multiple R-squared: 0.8082, Adjusted R-squared: 0.8047
## F-statistic: 231.3 on 17 and 933 DF, p-value: < 2.2e-16

• None of the estimates or p-values
changed after refitting the model

• However, extraneous rows were
removed (and the table now fits on the
slide. Yay!)
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Model Diagnostics

library(gglm)
gglm(full_mod)
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• Diagnostic plots reveal no concerns about model assumptions.

• But we likely still have multicollinearity, and some variables might not be that helpful

Prof Wells (STA 295: Stat Learning) Feature Selection and Engineering March 7th, 2024 19 / 42



Explaratory Data Analysis Subset Selection Other Selection Algorithms

Model Diagnostics

library(gglm)
gglm(full_mod)

−3
−2
−1

0
1
2
3

−10.0 −7.5 −5.0 −2.5 0.0
Fitted values

R
es

id
ua

ls

Residuals vs Fitted

−2

0

2

−2 0 2
Theoretical QuantilesS

ta
nd

ar
di

ze
d 

R
es

id
ua

ls

Normal Q−Q

0.0

0.5

1.0

1.5

−10.0 −7.5 −5.0 −2.5 0.0
Fitted values|S

ta
nd

ar
di

ze
d 

re
si

du
al

s|

Scale−Location

−2

0

2

0.00 0.05 0.10 0.15 0.20
LeverageS

ta
nd

ar
di

ze
d 

R
es

id
ua

ls

Residual vs. Leverage

• Diagnostic plots reveal no concerns about model assumptions.

• But we likely still have multicollinearity, and some variables might not be that helpful

Prof Wells (STA 295: Stat Learning) Feature Selection and Engineering March 7th, 2024 19 / 42



Explaratory Data Analysis Subset Selection Other Selection Algorithms

Model Diagnostics

library(gglm)
gglm(full_mod)

−3
−2
−1

0
1
2
3

−10.0 −7.5 −5.0 −2.5 0.0
Fitted values

R
es

id
ua

ls

Residuals vs Fitted

−2

0

2

−2 0 2
Theoretical QuantilesS

ta
nd

ar
di

ze
d 

R
es

id
ua

ls

Normal Q−Q

0.0

0.5

1.0

1.5

−10.0 −7.5 −5.0 −2.5 0.0
Fitted values|S

ta
nd

ar
di

ze
d 

re
si

du
al

s|

Scale−Location

−2

0

2

0.00 0.05 0.10 0.15 0.20
LeverageS

ta
nd

ar
di

ze
d 

R
es

id
ua

ls

Residual vs. Leverage

• Diagnostic plots reveal no concerns about model assumptions.

• But we likely still have multicollinearity, and some variables might not be that helpful

Prof Wells (STA 295: Stat Learning) Feature Selection and Engineering March 7th, 2024 19 / 42



Explaratory Data Analysis Subset Selection Other Selection Algorithms

Section 2

Subset Selection
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Methodology

Suppose we wish to find a linear model for Y with p predictors X1, . . . , Xp. How do we
determine the optimal collection of predictors?

First, determine an appropriate selection procedure:
• Cross-validation: Computationally expensive, but also most accurate; requires no

model or data assumptions; best overall
• Validation set: Subject to variability in test/training split; but can be alright for large

data sets, or initial exploration
• Training set assessment: using RSS alone on training will lead to overfitting and

biased estimate of test MSE;
• Instead, can apply penalty to RSS based on number of predictors in the model, in order

to better estimate test MSE
• However, can use if validation set is not available, or if large number of models need to

be considered.
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Training Set Criteria

To compare models on the training set, we can use the following metrics, each of which
penalizes the training RSS. Suppose we have d predictors in the model and n observations:

• Adjusted R2: Provides unbiased estimate of population R2 and is slightly smaller than R2.
Best models have largest textrmadjR2

adj R2 = 1 −
RSS/(n − d − 1)

TSS/(n − 1)

• Cp : penalizes training RSS by typical discrepancy between test and training. Best models
have smallest Cp

Cp =
1
n

(RSS + 2dσ̂2)

• Akaike information criterion (AIC): uses method of maximum likelihood and information
theory. Best models have smallest AIC

AIC =
1

nσ̂2 (RSS + 2 · dσ̂2)

• Bayesian information criterion (BIC): uses likelihood function and Bayesian posteriors. Best
models have smallest BIC

BIC =
1

nσ̂2 (RSS + log(n)d · σ̂2)
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Comparison of Formulas

Criteria Formulas:

Cp = 1
n (RSS + 2dσ̂2) adj R2 = 1 − RSS/(n−d−1)

TSS/(n−1)

AIC = 1
nσ̂2 (RSS + 2d · σ̂2) BIC = 1

nσ̂2 (RSS + log(n)d · σ̂2)

• When n is large relative to d , R2 ≈ adj R2. Since R2 overfits models, adj R2 will also tend
to overfit, and so shouldn’t be used.

• Other than a multiplicative constant (that doesn’t depend on the model), Cp and AIC are
equal, and so will always preference the same models

• Both AIC and BIC apply a penalty for adding additional predictors; since log(n) > 2, this
penalty is greater for BIC than AIC; hence, BIC will select models with fewer variables.

• When comparing models with the same number of variables, differences in these criteria
values will only depend on differences in RSS.

• Hence, for fixed number of variables, we can choose the model that has the smallest
RSS.
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Best Subset

With p predictors, there are a total of 2p possible MLR models.
• There are

(p
d

)
= p!

d!(p−d)! models using exactly d of p predictors

Theoretically, we can find the best model by fitting each possible model and selecting the
best via appropriate selection criteria (AIC, BIC, adjR2, CV)

Downsides?
• Computation time and storage grows exponentially in p
• May have low marginal improvement despite number of models fitted
• We are performing a large number of tests, which corresponds to a relatively flexible

model. Likely to overfit.
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Best Subset in R

We use the regsubsets function in the leaps library.

• regsubsets uses the same syntax as lm. The summary function outputs the best set
of variables for the given number of predictors, across the range supplied

• Be default, regsubsets only returns up to the best eight models. But nvmax can be
used to return as many variables as desired

• The best model for each fixed number of predictors is determined by RSS
• The regsubsets function returns RSS, adjR2, Cp, BIC for the best model of each

number of predicts.
• The overall best model can be selected using any of these criteria.
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Using regsubsets

library(leaps)
best_subset<-regsubsets(Solubility~.-NumNonHBonds -NumHydrogen -NumRings,

data = solTrain, nvmax = 17)

• The regsubsets function itself outputs a special regsubsets object, which contains
data but is not user-accessible.

• We’ll use the summary function, which provides the following elements:
• which: a list of which predictors are in each model
• outmat: a version of which for printing
• Several metrics: rsq, rss, adjr2, cp, bic
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Summary of regsubsets

• Stars indicate variable is included in model.
• For readability, I’ve only shown models with 5 or fewer variables

summary(best_subset)$outmat

## MolWeight NumAtoms NumNonHAtoms NumBonds NumMultBonds NumRotBonds
## 1 ( 1 ) "*" " " " " " " " " " "
## 2 ( 1 ) "*" " " " " " " " " " "
## 3 ( 1 ) "*" " " " " " " "*" " "
## 4 ( 1 ) " " " " "*" " " " " " "
## 5 ( 1 ) " " " " "*" "*" " " "*"
## NumDblBonds NumAromaticBonds NumCarbon NumNitrogen NumOxygen NumSulfer
## 1 ( 1 ) " " " " " " " " " " " "
## 2 ( 1 ) " " " " " " " " " " " "
## 3 ( 1 ) " " " " " " " " " " " "
## 4 ( 1 ) " " " " "*" "*" "*" " "
## 5 ( 1 ) " " " " " " "*" "*" " "
## NumChlorine NumHalogen HydrophilicFactor SurfaceArea1 SurfaceArea2
## 1 ( 1 ) " " " " " " " " " "
## 2 ( 1 ) " " " " " " "*" " "
## 3 ( 1 ) " " " " " " "*" " "
## 4 ( 1 ) " " " " " " " " " "
## 5 ( 1 ) " " " " " " " " " "
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Other Selection Metrics

The summary function can return selection metrics for each model.
d <- data.frame(model = 1:17,

adjr2 = summary(best_subset)$adjr2,
rss = summary(best_subset)$rss,
cp = summary(best_subset)$cp,
bic = summary(best_subset)$bic)

d %>% head()

## model adjr2 rss cp bic
## 1 1 0.3952106 2404.1073 1992.4929 -465.5206
## 2 2 0.6590876 1353.7381 710.2104 -1004.8309
## 3 3 0.7120856 1142.0806 453.4176 -1159.6606
## 4 4 0.7447217 1011.5526 295.8216 -1268.2214
## 5 5 0.7742668 893.5334 153.5199 -1379.3431
## 6 6 0.7813296 864.6602 120.2167 -1403.7232
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Vizualizing Variables

The variables present can also be plotted directly using plot:
plot(best_subset, scale = "bic")
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• Models are ordered by values of BIC criteria. Dark rectangles indicate variable is
present in the best model for that criteria’s value.
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Plotting

We can use ggplot2 to visualize selection metric as a function of variable number
ggplot(d, aes(x = model, y = adjr2))+geom_line()+theme_bw()
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Plotting
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Finding Best Subset

• To calculate the absolute best cp, bic, etc. we use either the which.min or
which.max function

adjr2.max <- which.max(summary(best_subset)$adjr2)
rss.min <- which.min(summary(best_subset)$rss)
cp.min <- which.min(summary(best_subset)$cp)
bic.min <- which.min(summary(best_subset)$bic)
data.frame(adjr2.max, rss.min, cp.min, bic.min)

## adjr2.max rss.min cp.min bic.min
## 1 15 17 15 9

• So what model is best?
• Usually the simplest model.
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Model Coefficients

• To show coefficients associated with the model with lowest bic, use coef:
coef(best_subset, bic.min)

## (Intercept) MolWeight NumBonds NumMultBonds
## 0.179049978 -0.007776351 -0.042507435 -0.368292209
## NumRotBonds NumAromaticBonds NumNitrogen NumOxygen
## -0.138979290 0.225474767 0.628386933 0.782490751
## NumChlorine SurfaceArea2
## -0.386474357 -0.008279467

• And to get a vector of variable names, use names:
names(coef(best_subset, bic.min))

## [1] "(Intercept)" "MolWeight" "NumBonds" "NumMultBonds"
## [5] "NumRotBonds" "NumAromaticBonds" "NumNitrogen" "NumOxygen"
## [9] "NumChlorine" "SurfaceArea2"
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Model Testing

• Let’s go with 4 models, based on best subset (since we have it)
• 5 variables (elbow of bic plot)
• 9 variables (best bic)
• 15 variables (best adjusted R2 and Cp)
• 17 variables (the full model)

• We’ll use 10-fold cross-validation to compare:

## mod5 mod9 mod15 mod17
## 0.9685227 0.9121188 0.8955325 0.8950262

• It appears the full-model performed best!
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Code for Cross-Validation (Reference)

mod5 <-lm(Solubility ~ NumNonHAtoms + NumBonds + NumRotBonds+
NumNitrogen + NumOxygen,

data = solTrain)

mod9 <-lm(Solubility ~ MolWeight + NumBonds + NumMultBonds+
NumRotBonds + NumAromaticBonds + NumNitrogen +
NumOxygen + NumChlorine + SurfaceArea2,

data = solTrain)

mod15 <-lm(Solubility ~.
-NumNonHBonds -NumHydrogen -NumRings - NumNitrogen - NumOxygen,
data = solTrain)

mod17 <-lm(Solubility~.
-NumNonHBonds -NumHydrogen -NumRings ,
data = solTrain)
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Code for Cross-Validation (Reference)

set.seed(100)
library(rsample)

my_cv <- vfold_cv(solTrain, v = 5, repeats = 10)

get_rmse <- function(split, model){
train <- analysis(split)
test <- assessment(split)
preds <- predict(model, newdata = test)
obs <- test$Solubility
rmse <- sqrt(mean((obs-preds)ˆ2))
rmse

}

Prof Wells (STA 295: Stat Learning) Feature Selection and Engineering March 7th, 2024 36 / 42



Explaratory Data Analysis Subset Selection Other Selection Algorithms

Code for Cross-Validation (Reference)

library(purrr)
my_rmse_df <- data.frame(

mod5 = map_dbl(my_cv$splits, get_rmse, model = mod5),
mod9 = map_dbl(my_cv$splits, get_rmse, model = mod9),
mod15 = map_dbl(my_cv$splits, get_rmse, model = mod15),
mod17 = map_dbl(my_cv$splits, get_rmse, model = mod17)

)

map_dbl(my_rmse_df, mean)
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Section 3

Other Selection Algorithms
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Forward Selection

Forward selection is a computationally efficient alternative to best subset

• To perform forward selection, create the best 1 variable model. Then create p − 1
new 2 variable models by adding each other predictor one-at-a-time to the existing
1-variable model. Repeat for 3 variables and so on.

• Compared to Best Subset, forward selection computation time grows polynomially in
p: Num. Models = 1 + p(p+1)

2

• Forward selection tends to favor parsimonous models
• Downsides?

• Not guaranteed to find the best model (or even something close to the best model)
• Early predictors may become redundant
• Can be unstable

Prof Wells (STA 295: Stat Learning) Feature Selection and Engineering March 7th, 2024 39 / 42



Explaratory Data Analysis Subset Selection Other Selection Algorithms

Forward Selection

Forward selection is a computationally efficient alternative to best subset
• To perform forward selection, create the best 1 variable model. Then create p − 1

new 2 variable models by adding each other predictor one-at-a-time to the existing
1-variable model. Repeat for 3 variables and so on.

• Compared to Best Subset, forward selection computation time grows polynomially in
p: Num. Models = 1 + p(p+1)

2

• Forward selection tends to favor parsimonous models
• Downsides?

• Not guaranteed to find the best model (or even something close to the best model)
• Early predictors may become redundant
• Can be unstable

Prof Wells (STA 295: Stat Learning) Feature Selection and Engineering March 7th, 2024 39 / 42



Explaratory Data Analysis Subset Selection Other Selection Algorithms

Forward Selection

Forward selection is a computationally efficient alternative to best subset
• To perform forward selection, create the best 1 variable model. Then create p − 1

new 2 variable models by adding each other predictor one-at-a-time to the existing
1-variable model. Repeat for 3 variables and so on.

• Compared to Best Subset, forward selection computation time grows polynomially in
p: Num. Models = 1 + p(p+1)

2

• Forward selection tends to favor parsimonous models
• Downsides?

• Not guaranteed to find the best model (or even something close to the best model)
• Early predictors may become redundant
• Can be unstable

Prof Wells (STA 295: Stat Learning) Feature Selection and Engineering March 7th, 2024 39 / 42



Explaratory Data Analysis Subset Selection Other Selection Algorithms

Forward Selection

Forward selection is a computationally efficient alternative to best subset
• To perform forward selection, create the best 1 variable model. Then create p − 1

new 2 variable models by adding each other predictor one-at-a-time to the existing
1-variable model. Repeat for 3 variables and so on.

• Compared to Best Subset, forward selection computation time grows polynomially in
p: Num. Models = 1 + p(p+1)

2

• Forward selection tends to favor parsimonous models

• Downsides?
• Not guaranteed to find the best model (or even something close to the best model)
• Early predictors may become redundant
• Can be unstable

Prof Wells (STA 295: Stat Learning) Feature Selection and Engineering March 7th, 2024 39 / 42



Explaratory Data Analysis Subset Selection Other Selection Algorithms

Forward Selection

Forward selection is a computationally efficient alternative to best subset
• To perform forward selection, create the best 1 variable model. Then create p − 1

new 2 variable models by adding each other predictor one-at-a-time to the existing
1-variable model. Repeat for 3 variables and so on.

• Compared to Best Subset, forward selection computation time grows polynomially in
p: Num. Models = 1 + p(p+1)

2

• Forward selection tends to favor parsimonous models
• Downsides?

• Not guaranteed to find the best model (or even something close to the best model)
• Early predictors may become redundant
• Can be unstable

Prof Wells (STA 295: Stat Learning) Feature Selection and Engineering March 7th, 2024 39 / 42



Explaratory Data Analysis Subset Selection Other Selection Algorithms

Forward Selection

Forward selection is a computationally efficient alternative to best subset
• To perform forward selection, create the best 1 variable model. Then create p − 1

new 2 variable models by adding each other predictor one-at-a-time to the existing
1-variable model. Repeat for 3 variables and so on.

• Compared to Best Subset, forward selection computation time grows polynomially in
p: Num. Models = 1 + p(p+1)

2

• Forward selection tends to favor parsimonous models
• Downsides?

• Not guaranteed to find the best model (or even something close to the best model)

• Early predictors may become redundant
• Can be unstable

Prof Wells (STA 295: Stat Learning) Feature Selection and Engineering March 7th, 2024 39 / 42



Explaratory Data Analysis Subset Selection Other Selection Algorithms

Forward Selection

Forward selection is a computationally efficient alternative to best subset
• To perform forward selection, create the best 1 variable model. Then create p − 1

new 2 variable models by adding each other predictor one-at-a-time to the existing
1-variable model. Repeat for 3 variables and so on.

• Compared to Best Subset, forward selection computation time grows polynomially in
p: Num. Models = 1 + p(p+1)

2

• Forward selection tends to favor parsimonous models
• Downsides?

• Not guaranteed to find the best model (or even something close to the best model)
• Early predictors may become redundant

• Can be unstable

Prof Wells (STA 295: Stat Learning) Feature Selection and Engineering March 7th, 2024 39 / 42



Explaratory Data Analysis Subset Selection Other Selection Algorithms

Forward Selection

Forward selection is a computationally efficient alternative to best subset
• To perform forward selection, create the best 1 variable model. Then create p − 1

new 2 variable models by adding each other predictor one-at-a-time to the existing
1-variable model. Repeat for 3 variables and so on.

• Compared to Best Subset, forward selection computation time grows polynomially in
p: Num. Models = 1 + p(p+1)

2

• Forward selection tends to favor parsimonous models
• Downsides?

• Not guaranteed to find the best model (or even something close to the best model)
• Early predictors may become redundant
• Can be unstable

Prof Wells (STA 295: Stat Learning) Feature Selection and Engineering March 7th, 2024 39 / 42



Explaratory Data Analysis Subset Selection Other Selection Algorithms

Backward Elimination

Backward Elimination is another computationally efficient alternative to best subset

• To perform backward selection, begin with full model. Then create p − 1 new p − 1
variable models by removing one-at-a-time each other predictor from the existing
p-variable model. Repeat for p − 2 variables and so on.

• Compared to Best Subset, backward elimination computation time grows polynomially
in p: Num. Models = 1 + p(p+1)

2

• Backward elimination tends to favor in-depth models
• Downsides?

• Not guaranteed to find the best model (or even something close to the best model)
• Requires fewer predictors than observations
• Susceptible to multicollinearity
• Can be unstable
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Forward/Backward Selection in R

We again use the regsubsets function in the leaps library.
forward_select<-regsubsets(Solubility~.-NumNonHBonds -NumHydrogen -NumRings,

data = solTrain, nvmax = 17, method = "forward")

backward_elim<-regsubsets(Solubility~.-NumNonHBonds -NumHydrogen -NumRings,
data = solTrain, nvmax = 17, method = "backward")

• All of the same tools used for best subsets are available for forward and backward selection

Prof Wells (STA 295: Stat Learning) Feature Selection and Engineering March 7th, 2024 41 / 42



Explaratory Data Analysis Subset Selection Other Selection Algorithms

Comparison of Models
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