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Penalized Regression Ridge Regression Ridge Regression in R

Outline

• Investigate the relationship between coefficient size and variance in linear models
• Discuss penalized regression models as means of improving MSE of linear models
• Implement Ridge Regression in R
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Penalized Regression
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Penalized Regression Ridge Regression Ridge Regression in R

Motivation

• Recall, for SLR, β̂0, β̂1 are given by

β̂1 =
∑n

i=1(xi − x̄)(yi − ȳ)∑n
i=1(xi − x̄)2 β̂0 = ȳ − β̂1x̄

• Under the standard assumptions, the coefficients produced by least squares regression
are unbiased.

• That is, if the true relationship between Y and X is linear Y = β0 + β1X + ϵ, then

E [β̂0] = β0 E [β̂1] = β1

• Moreover, among all unbiased linear models, the least squares model has the lowest
variance.

• Does this mean that the least squares model has the lowest MSE among all linear
models?

• No! MSE is a combination of bias and variance.
• It is possible that a small increase in bias can correspond to large decrease in variance.
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i=1(xi − x̄)2 β̂0 = ȳ − β̂1x̄
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Penalized Regression Ridge Regression Ridge Regression in R

Shrinking Coefficients

• Suppose the true relationship between Y and X1, X2 is given by

Y = 1 + X1 + 5X2 + ϵ ϵ ∼ N(0, 1).
• Let β̂0, β̂1, β̂2 be the model coefficient estimates given by least squares regression.

Which of the following models has higher variance in predictor estimates? Higher bias?

Model 1: ŷ =β̂0 + β̂1x1 + β̂2x2

Model 2: ŷ =β̂0 + 0.97 · β̂1x1 + 0.98 · β̂2x2

• Model 2 has higher bias, but lower variance.
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Penalized Regression Ridge Regression Ridge Regression in R

A Linear Model

• Consider the following training data for the model:
Y = 1 + X1 + 5X2 + ϵ ϵ ∼ N(0, 1)
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• What are some likely problems with the MLR model?
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Penalized Regression Ridge Regression Ridge Regression in R

Bias-Variance in Least Squares

• Using least squares, the model estimates are

Ŷ = −0.5 + 2.8X1 + 5.8X2

• Let’s consider variance and bias for estimate Y when X1 = 0.25 and X2 = .5.
• Using the true model, the expected value of Y is

Y = 1 + X1 + 5 · X2 = 1 + 0.25 + 5 · 0.5 = 3.75
• Using the least squares model from training data, the predicted value of Y is

Y = −0.5 + 2.8X1 + 5.8X2 = −0.5 + 2.8 · 0.25 + 5.8 · 0.5 = 3.1

• But how will the predicted value change if we repeat across 5000 simulations from the
model?
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Penalized Regression Ridge Regression Ridge Regression in R

Simulation

set.seed(1011)
test_point <- data.frame(x1 = 0.25, x2 = .5)

trials<-5000
prediction <- rep(NA, trials)
for (i in 1:trials){

e<- rnorm(20,0,1)
y<- 1 + x1 + 5*x2 + e
sim_data <- data.frame(x1,x2,y)
mod <- lm(y ~ x1 + x2, data = sim_data)
prediction[i] <- predict(mod, test_point)

}

simulation <- data.frame(trial_num = 1:trials, prediction)

Prof Wells (STA 295: Stat Learning) Penalized Regression March 12th, 2024 8 / 41



Penalized Regression Ridge Regression Ridge Regression in R

Prediction Distribution

True Value Average Prediction
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Distribution of Predictions across 5000 simulations

simulation %>% summarize(
mean = mean(prediction), variance = var(prediction))

## mean variance
## 1 3.772056 1.480935
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Penalized Regression Ridge Regression Ridge Regression in R

A Shrunken Model

• Now suppose we use the model algorithm

ŷ = β̂0 + 0.97 · β̂1x1 + 0.98 · β̂2x2

• Since β̂0, β̂1, β̂2 are unbiased, then the expected prediction for Y when X1 = 0.25 and
X2 = 0.5 is

E [ŷ ] = β1 + 0.97 · β1x1 + 0.98 · β2x2 = 1 + 0.97 · 0.25 + 0.98 · 5 · 0.5 = 3.69

• Based on the first simulation, the model estimate is

Ŷ = −0.5 + 0.97 · 2.8X1 + 0.98 · 5.8X2 = −0.5 + 2.71X1 + 5.68X2

• And the prediction when X1 = 0.25 and X2 = 0.5 is

ŷ = −0.5 + 2.71X1 + 5.68X2 = −0.5 + 2.71 · 0.25 + 5.68 · 0.5 = 3.525
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ŷ = −0.5 + 2.71X1 + 5.68X2 = −0.5 + 2.71 · 0.25 + 5.68 · 0.5 = 3.525

Prof Wells (STA 295: Stat Learning) Penalized Regression March 12th, 2024 10 / 41



Penalized Regression Ridge Regression Ridge Regression in R

Simulation II

set.seed(1001)

trials<-5000
prediction2 <- rep(NA, trials)
for (i in 1:trials){

e<- rnorm(20,0,1)
y<- 1 + x1 + 5*x2 + e
sim_data <- data.frame(x1,x2,y)
mod <- lm(y ~ x1 + x2, data = sim_data)
b0 <- 1*coef(mod)[1]
b1 <- .97*coef(mod)[2]
b2 <- .98*coef(mod)[3]
prediction2[i] <- b0 + b1*0.25 + b2*0.5

}

simulation2 <- data.frame(trial_num = 1:trials, prediction2)
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Penalized Regression Ridge Regression Ridge Regression in R

Prediction Distribution

Average Prediction True Value
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Distribution of Predictions across 5000 simulations

simulation2 %>% summarize(
mean = mean(prediction2), variance = var(prediction2))

## mean variance
## 1 3.70387 1.434099
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Penalized Regression Ridge Regression Ridge Regression in R

Model Comparison

• True relationship: Y = 1 + X1 + 5X2 + ϵ

• Model 1: ŷ = β̂0 + β̂1x1 + β̂2x2

## mean variance avg_error
## 1 3.772056 1.480935 1.481125

• Model 2: ŷ = β̂0 + 0.97 · β̂1x1 + 0.98 · β̂2x2

## mean variance avg_error
## 1 3.70387 1.434099 1.435941

• It looks like the model with smaller coefficients actually performed better!
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Penalized Regression Ridge Regression Ridge Regression in R

Section 2

Ridge Regression
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Penalized Regression Ridge Regression Ridge Regression in R

Shrinkage Penalty

• There are some situations in which multiple linear regression has high MSE:

• Predictors are strongly correlated (high variance)
• Many predictors relative to data size (high variance)
• Model form is non-linear (high bias)

• To improve models in the first two cases, we reduce MSE by reducing variance at the
cost slight increase in bias.

• In the presence of multicollinearity or over-fitting, least squares estimates tend to be
too large.

• To build a better model, we reduce the size of coefficients relative to least squares
regression.
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Penalized Regression Ridge Regression Ridge Regression in R

Ridge Regression

• Recall that least squares regression estimates β̂0, β̂1, . . . , β̂p for

ŷ = β0 + β1X1 + · · · + βpXp + ϵ
are obtained by finding the values of β that minimize

RSS =
n∑

i=1

(yi − ŷi )2 =
n∑

i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

• To perform Ridge Regression, we instead find coefficients β that minimize

RSS + λ

p∑
i=1

β2
i where λ ≥ 0 is tuning parameter

Why?
• The term λ

∑p
i=1 β2

i is the shrinkage penalty, and is small when the β are small.
• With a shrinkage penalty, the algorithm prefers models with lower coefficients.
• This tends to reduce variance, at the cost of increased bias.
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ŷ = β0 + β1X1 + · · · + βpXp + ϵ
are obtained by finding the values of β that minimize

RSS =
n∑

i=1

(yi − ŷi )2 =
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Penalized Regression Ridge Regression Ridge Regression in R

Effects of the Tuning Parameter

• Goal: Find β which minimize RSS + λ
∑p

i=1 β2
i

• What will happen to βi as λ → ∞? As λ → 0?
• What will happen to β0 as λ → ∞? As λ → 0?
• What happens to MSE as λ → 0 or λ → ∞?
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Penalized Regression Ridge Regression Ridge Regression in R

Simulation

• Consider a linear model with 9 predictors and 100 observations.

y = 10 + 1x1 + 2x2 · · · + 8x8 + 9x9 + ϵ ϵ ∼ N(0, 4)

##
## Call:
## lm(formula = y ~ ., data = sim_data2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.5148 -1.5155 -0.0932 1.8054 5.1007
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.6034 1.3023 0.463 0.6443
## x1 0.2653 0.8831 0.300 0.7645
## x2 2.1047 0.8005 2.629 0.0101 *
## x3 1.9316 0.7766 2.487 0.0147 *
## x4 3.5635 0.8133 4.382 3.18e-05 ***
## x5 6.0143 0.7925 7.589 2.84e-11 ***
## x6 5.2844 0.7810 6.766 1.30e-09 ***
## x7 7.7421 0.8657 8.944 4.51e-14 ***
## x8 9.1352 0.7466 12.236 < 2e-16 ***
## x9 9.4859 0.8046 11.789 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.244 on 90 degrees of freedom
## Multiple R-squared: 0.8437, Adjusted R-squared: 0.828
## F-statistic: 53.97 on 9 and 90 DF, p-value: < 2.2e-16
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Penalized Regression Ridge Regression Ridge Regression in R

Simulation

• What happens to the size of coefficients as λ gets larger?
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Penalized Regression Ridge Regression Ridge Regression in R

Scale

The coefficients in the least squares regression equation are scale-equivalent

• That is, scaling a predictor xi by a value c will lead rescaling slope estimate β̂i by 1/c.
• The predicted value is the same, regardless of scale.

• Suppose we model a toddler’s height (in cm) based on their weight (in kg)
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Penalized Regression Ridge Regression Ridge Regression in R

Scale

• Suppose we model a toddler’s height (in cm) based on their weight (in kg)
lm1 <- lm(height_cm ~ weight_kg, data = toddler)
summary(lm1)$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 36.61 2.0709 17.68 3.017e-32
## weight_kg 4.05 0.2166 18.70 4.322e-34

• For every 1 kg increase in weight, the model predicts a 4.05 cm increase in height.

predict(lm1, newdata = data.frame(weight_kg = 10))

## 1
## 77.11

• The predicted height for a 10 kg toddler is 77.11 cm.
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Penalized Regression Ridge Regression Ridge Regression in R

Scale

• If we instead measured weight in grams
toddler <- toddler %>% mutate(weight_g = 1000*weight_kg)

lm2 <- lm(height_cm ~ weight_g, data = toddler)
summary(lm2)$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 36.60964 2.0708779 17.68 3.017e-32
## weight_g 0.00405 0.0002166 18.70 4.322e-34

• For every 1 g increase in weight, the model predicts a 0.00405 cm increase in height.
predict(lm2, newdata = data.frame(weight_g = 10*1000))

## 1
## 77.11

• The predicted height for a 10 kg toddler is still 77.11 cm.
• Rescaling predictors in a least squares model does not change the model accuracy

(predictions and RSS do not change)
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Penalized Regression Ridge Regression Ridge Regression in R

Scale

• However, for Ridge Regression, the optimal model depends on the relative scale of the
predictors. Changing the scale of one predictor will lead to a different optimal model.

• Recall the shrinkage penalty is λ
∑2

i=1 β2
i

• Consider Y as a function of predictors X1 and X2

Y = β0 + β1X1 + β2X2 Y = β0 + β1X1 + β′
2(X2/1000)

• In the second case, we rescaled X2 by a factor of 1/1000. Comparable predictions will be
made for β′

2 ≈ 1000 · β2.

• In the second case, ridge regression will prefer models with very small β′
2; and therefore, will

select models which make predictions using only minimal contributions of X2.
• In the first case, ridge regression may prefer models where β is relatively large, and so

selects models which do include contributions from X2.

• Ridge regression is most effective if predictors are standardized first.
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Section 3

Ridge Regression in R
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Penalized Regression Ridge Regression Ridge Regression in R

Solubility

The solubility data set from the AppliedPredictiveModeling package contains
solubility and chemical structure for a sample of 1,267 different compounds.

• For this demonstration, we’ll work with just a subset of 30% of the available
observations.

• This subsetted data has been split into a training set solTrain and a testing set
solTest.

nrow(solTrain)

## [1] 285
ncol(solTrain)

## [1] 21
nrow(solTest)

## [1] 95
ncol(solTest)

## [1] 21
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• For this demonstration, we’ll work with just a subset of 30% of the available
observations.

• This subsetted data has been split into a training set solTrain and a testing set
solTest.
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Multicollinearity

• Recall that several predictors were very strongly correlated
• We even removed several from our linear model because of they were completed

determined by the values of other variables (NumNonHBonds NumHydrogen NumRings )
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Feature Selection

• Previously, we used regsubsets from the leaps package to choose the best model:
best15 <-lm(Solubility ~.-NumNonHBonds -NumHydrogen -NumRings

-NumNitrogen -NumOxygen,
data = solTrain)

• And computed the MSE of the model on test data
preds <- predict(best15, solTest)
data.frame(

mse = mean((solTest$Solubility - preds)ˆ2)
)

## mse
## 1 0.7549
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Variable Importance

• The summary table suggests most variables have very significant p-value.
##
## Call:
## lm(formula = Solubility ~ . - NumNonHBonds - NumHydrogen - NumRings -
## NumNitrogen - NumOxygen, data = solTrain)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.9349 -0.5748 0.0814 0.6091 1.8835
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.31384 0.29783 1.05 0.29295
## MolWeight -0.00826 0.00276 -2.99 0.00301 **
## NumAtoms 0.22441 0.14905 1.51 0.13336
## NumNonHAtoms 1.21912 0.20542 5.93 9.0e-09 ***
## NumBonds -0.54781 0.17740 -3.09 0.00223 **
## NumMultBonds -1.36634 0.38003 -3.60 0.00039 ***
## NumRotBonds -0.08849 0.05353 -1.65 0.09947 .
## NumDblBonds 0.47275 0.31674 1.49 0.13673
## NumAromaticBonds 0.99386 0.34750 2.86 0.00457 **
## NumCarbon -0.40511 0.12471 -3.25 0.00131 **
## NumSulfer 0.35662 0.44543 0.80 0.42405
## NumChlorine -0.28807 0.16132 -1.79 0.07528 .
## NumHalogen -1.32653 0.28033 -4.73 3.6e-06 ***
## HydrophilicFactor 0.20762 0.15463 1.34 0.18050
## SurfaceArea1 0.03301 0.01460 2.26 0.02462 *
## SurfaceArea2 -0.05094 0.01692 -3.01 0.00285 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.927 on 269 degrees of freedom
## Multiple R-squared: 0.791, Adjusted R-squared: 0.779
## F-statistic: 67.9 on 15 and 269 DF, p-value: <2e-16
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Rescaling a Data Frame

• We can use the scale function in R to standardize every column of a data frame:
std_solTrain <- scale(solTrain) %>% as.data.frame()

• A quick verification:
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## df mean_sol sd_sol
## 1 solTrain -2.775 1.974
## 2 std_solTrain 0.000 1.000
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Scaled Model Coefficients

• Some coefficients are still relatively large (possibly because of collinearity)
##
## Call:
## lm(formula = Solubility ~ . - NumNonHBonds - NumHydrogen - NumRings -
## NumNitrogen - NumOxygen, data = std_solTrain)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.4871 -0.2912 0.0412 0.3086 0.9544
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.12e-15 2.78e-02 0.00 1.00000
## MolWeight -4.10e-01 1.37e-01 -2.99 0.00301 **
## NumAtoms 1.44e+00 9.58e-01 1.51 0.13336
## NumNonHAtoms 3.88e+00 6.53e-01 5.93 0.000000009 ***
## NumBonds -3.76e+00 1.22e+00 -3.09 0.00223 **
## NumMultBonds -3.39e+00 9.44e-01 -3.60 0.00039 ***
## NumRotBonds -1.08e-01 6.52e-02 -1.65 0.09947 .
## NumDblBonds 2.79e-01 1.87e-01 1.49 0.13673
## NumAromaticBonds 2.51e+00 8.77e-01 2.86 0.00457 **
## NumCarbon -1.08e+00 3.33e-01 -3.25 0.00131 **
## NumSulfer 1.09e-01 1.36e-01 0.80 0.42405
## NumChlorine -1.98e-01 1.11e-01 -1.79 0.07528 .
## NumHalogen -9.48e-01 2.00e-01 -4.73 0.000003595 ***
## HydrophilicFactor 1.03e-01 7.69e-02 1.34 0.18050
## SurfaceArea1 5.31e-01 2.35e-01 2.26 0.02462 *
## SurfaceArea2 -9.31e-01 3.09e-01 -3.01 0.00285 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.47 on 269 degrees of freedom
## Multiple R-squared: 0.791, Adjusted R-squared: 0.779
## F-statistic: 67.9 on 15 and 269 DF, p-value: <2e-16
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Ridge Regression Preparation

• In order to use ridge regression, we need to separate our training data into a predictor
matrix and a response vector:

x<-model.matrix(Solubility ~., data = solTrain)[,-1]
y<-solTrain$Solubility

• The model.matrix function creates a matrix of predictors and converts all
categorical variables to dummy variables

• The [,-1] code selects all columns of the model matrix except the 1st (which
corresponds to the intercept)

• We also create vector grid of suitable tuning parameters λ.
grid = 10ˆ(seq( -5, 5, length = 100))
head(grid)

## [1] 0.00001000 0.00001262 0.00001592 0.00002009 0.00002535 0.00003199

• The grid of values should be changed depending on the problem at hand.
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The glmnet package

• We use the glmnet function in the glmnet package in order to perform Ridge
Regression for a variety of values of the tuning parameter λ.

library(glmnet)
ridge_mod <- glmnet(x, y, alpha = 0, lambda = grid)

• The alpha argument in glmnet determines the type of penalty
• alpha = 0 corresponds to Ridge Regression. alpha = 1 corresponds to LASSO (to be

discussed next class)

• By default, glmnet standardizes observations. To use unstandardized observations,
add standardize = FALSE

• Here, we gave a specific range of values for the tuning parameter. But if no lambda
value is supplied, the function will automatically select a range.

• Remember! x needs to be the model matrix and y needs to be the response vector.
glmnet does not use the formula syntax of lm.
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Understanding output of glmnet

• Applying coef to the glmnet object gives a matrix of regression coefficients
• one column for each value of lambda and one row for each predictor (and intercept)

• An example of several rows and columns:
coef(ridge_mod)[1:5,1:6]

## 5 x 6 sparse Matrix of class "dgCMatrix"
## s0 s1 s2 s3 s4
## (Intercept) -2.77506730 -2.774979291 -2.774868231 -2.774728103 -2.774551305
## MolWeight -0.00000026 -0.000000328 -0.000000414 -0.000000522 -0.000000659
## NumAtoms -0.00000134 -0.000001691 -0.000002133 -0.000002692 -0.000003397
## NumNonHAtoms -0.00000354 -0.000004467 -0.000005636 -0.000007112 -0.000008974
## NumBonds -0.00000131 -0.000001656 -0.000002090 -0.000002637 -0.000003327
## s5
## (Intercept) -2.774328246
## MolWeight -0.000000831
## NumAtoms -0.000004286
## NumNonHAtoms -0.000011323
## NumBonds -0.000004198
coef(ridge_mod)[1:5,95:100]

## 5 x 6 sparse Matrix of class "dgCMatrix"
## s94 s95 s96 s97 s98 s99
## (Intercept) 0.64413 0.64726 0.64976 0.65181 0.65347 0.65478
## MolWeight -0.00806 -0.00806 -0.00806 -0.00806 -0.00806 -0.00806
## NumAtoms 0.01618 0.01758 0.01872 0.01969 0.02048 0.02110
## NumNonHAtoms 0.15747 0.15971 0.16150 0.16299 0.16419 0.16514
## NumBonds -0.05314 -0.05411 -0.05491 -0.05557 -0.05612 -0.05655
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Understanding output of glmnet

• In coef, columns are labeled by index of lambda (i.e. s0, s1, s2). The actual values of
lambda are stored in ridge_mod$lambda

ridge_mod$lambda

## [1] 100000 79248 62803 49770 39442 31257 24771 19630 15557 12328
## [11] 9770 7743 6136 4863 3854 3054 2420 1918 1520 1205

• To find a particular value of lambda (i.e. s17), subset the vector:
ridge_mod$lambda[17]

## [1] 2420

• And to get the corresponding model, subset columns of the coef matrix:
coef(ridge_mod)[,17]

## (Intercept) MolWeight NumAtoms NumNonHAtoms
## -2.76158736 -0.00001070 -0.00005508 -0.00014558
## NumBonds NumNonHBonds NumMultBonds NumRotBonds
## -0.00005394 -0.00012659 -0.00014768 -0.00009046
## NumDblBonds NumAromaticBonds NumHydrogen NumCarbon
## -0.00000461 -0.00014217 -0.00005565 -0.00017694
## NumNitrogen NumOxygen NumSulfer NumChlorine
## 0.00018026 0.00009812 -0.00038716 -0.00053786
## NumHalogen NumRings HydrophilicFactor SurfaceArea1
## -0.00054195 -0.00064385 0.00045126 0.00000904
## SurfaceArea2
## 0.00000370
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• In coef, columns are labeled by index of lambda (i.e. s0, s1, s2). The actual values of
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Penalized Regression Ridge Regression Ridge Regression in R

Coefficient Size

• What happens to coefficient size as λ changes?

plot(ridge_mod, xvar = "lambda")
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Penalized Regression Ridge Regression Ridge Regression in R

ggplot2 for glmnet

• A better plot using the broom package to tidy the output of glmnet for ggplot2:

library(broom)
tidied <- tidy(ridge_mod) %>% filter(term != "(Intercept)")
ggplot(tidied, aes(lambda, estimate, group = term, color = term)) +

geom_line() + scale_x_log10()+ theme_bw()+labs(title = "Coefficent estimates")
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Penalized Regression Ridge Regression Ridge Regression in R

Penalized Regression Performance

• Which values of lambda produce best model among λ = 0.001, 1, 1000?

• The glmnet function already fit models, so we just need to make predictions:
x_tst <- model.matrix(Solubility ~., data = solTest)[,-1]
preds<- predict(ridge_mod, s = c(0.001, 1, 1000), newx = x_tst) %>% as.data.frame()
head(preds)

## s1 s2 s3
## 1 -2.164 -2.540 -2.78
## 2 -3.609 -3.983 -2.78
## 3 -2.171 -2.353 -2.78
## 4 0.318 -0.456 -2.75
## 5 0.519 0.182 -2.75
## 6 -3.856 -3.548 -2.78
get_rmse <- function(x){sqrt(mean((solTest$Solubility-x)ˆ2))}
preds %>% summarize(across(everything(), get_rmse) )

## s1 s2 s3
## 1 0.856 0.909 1.95

• But how do we find the best value of λ?
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Penalized Regression Ridge Regression Ridge Regression in R

Cross Validation and glmnet

• We use the cv.glmnet function to perform cross-validation to compare MSE across
all values of λ

set.seed(1010)
my_cv<-cv.glmnet(x, y, alpha = 0, lambda = grid, nfolds = 10)
plot(my_cv)
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Penalized Regression Ridge Regression Ridge Regression in R

Best Lambda

• The cv.glmnet object records the value of lambda that. . .
• Has minimum error (lambda.min)
• Is largest with error within 1 st. dev of minimum error (lambda.1se)

• Why is lambda.1se useful?

best_L<-my_cv$lambda.min
best_L

## [1] 0.0272

reg_L <-my_cv$lambda.1se
reg_L

## [1] 0.559
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Penalized Regression Ridge Regression Ridge Regression in R

Better Plots

• As before, we can obtain a better plot using broom
tidied <- tidy(my_cv)
ggplot(tidied, aes(x = lambda, y = estimate))+geom_point( color = "red")+

scale_x_log10()+theme_bw()+labs(y = "MSE")+
geom_vline(xintercept = best_L, linetype = "dashed" )+
geom_vline(xintercept = reg_L, linetype = "dashed")
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Penalized Regression Ridge Regression Ridge Regression in R

Overall Performance

• Let’s compare performance for: the full model, the best 15 model, ridge regression
with λ = 0.027, and ridge regression with λ = 0.559.

full_mod <- lm(Solubility ~ ., data = solTrain)
preds <- data.frame(

full = predict(full_mod, solTest),
best_15 = predict(best15, solTest),
rr_min = c(predict(ridge_mod, s = best_L, newx = x_tst)),
rr_1se = c(predict(ridge_mod, s = reg_L, newx = x_tst))

)
preds %>% summarize(across(everything(),get_rmse))

## full best_15 rr_min rr_1se
## 1 0.868 0.869 0.859 0.883

• Ridge Regression wins!
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