Foundations of Statistical Learning II

Prof Wells

STA 295: Stat Learning

February 1st, 2024

Outline

In today's class, we will...

Outline

In today's class, we will...

- Discuss the Mean Squared Error as measure of model accuracy
- Investigate the Bias-Variance trade-off

Section 1

Mean Squared Error

Goal: Devise a quantitative measurement of error for a model. Then develop a general algorithm for finding the model that minimizes this measure of error.

Goal: Devise a quantitative measurement of error for a model. Then develop a general algorithm for finding the model that minimizes this measure of error.

For regression, the most common measure of error is the Mean Squared Error (MSE):

$$MSE(\hat{f}) = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \hat{f}(x_i) \right)^2$$

where \hat{f} is the model, the x_i are the observed predictor values, and the y_i are the corresponding observed response values.

Goal: Devise a quantitative measurement of error for a model. Then develop a general algorithm for finding the model that minimizes this measure of error.

For regression, the most common measure of error is the Mean Squared Error (MSE):

$$MSE(\hat{f}) = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \hat{f}(x_i) \right)^2$$

where \hat{f} is the model, the x_i are the observed predictor values, and the y_i are the corresponding observed response values.

• We also often work with root mean squared error (RMSE):

$$RMSE(\hat{f}) = \sqrt{MSE(\hat{f})}$$

Goal: Devise a quantitative measurement of error for a model. Then develop a general algorithm for finding the model that minimizes this measure of error.

• For regression, the most common measure of error is the **Mean Squared Error** (MSE):

$$MSE(\hat{f}) = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \hat{f}(x_i) \right)^2$$

where \hat{f} is the model, the x_i are the observed predictor values, and the y_i are the corresponding observed response values.

• We also often work with root mean squared error (RMSE):

$$RMSE(\hat{f}) = \sqrt{MSE(\hat{f})}$$

• What is one advantage of RMSE over MSE?

Goal: Devise a quantitative measurement of error for a model. Then develop a general algorithm for finding the model that minimizes this measure of error.

For regression, the most common measure of error is the Mean Squared Error (MSE):

$$MSE(\hat{f}) = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \hat{f}(x_i) \right)^2$$

where \hat{f} is the model, the x_i are the observed predictor values, and the y_i are the corresponding observed response values.

• We also often work with root mean squared error (RMSE):

$$RMSE(\hat{f}) = \sqrt{MSE(\hat{f})}$$

- What is one advantage of RMSE over MSE?
- Under what circumstances is MSE small?

• What are the problems with finding a function f which minimize MSE on the set of observed data $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$?

- What are the problems with finding a function f which minimize MSE on the set of observed data $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$?
- Training Data is the collection of data we use to build our model. Often, it is a subset of all data we have available.

- What are the problems with finding a function f which minimize MSE on the set of observed data $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$?
- Training Data is the collection of data we use to build our model. Often, it is a subset of all data we have available.
- Test Data is the collection of data on which we assess the accuracy of our model. It should be distinct from the training data.

- What are the problems with finding a function f which minimize MSE on the set of observed data $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$?
- Training Data is the collection of data we use to build our model. Often, it is a subset of all data we have available.
- Test Data is the collection of data on which we assess the accuracy of our model. It should be distinct from the training data.
- Goal: Use a model-building algorithm that builds model on **training data** in order to minimize MSE on a large number of unobserved **test data** points (x_0, y_0)

- What are the problems with finding a function f which minimize MSE on the set of observed data $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$?
- Training Data is the collection of data we use to build our model. Often, it is a subset of all data we have available.
- Test Data is the collection of data on which we assess the accuracy of our model. It should be distinct from the training data.
- Goal: Use a model-building algorithm that builds model on **training data** in order to minimize MSE on a large number of unobserved **test data** points (x_0, y_0)
 - i.e. minimize

test MSE = Ave
$$\left(y_0 - \hat{f}(x_0)\right)^2$$

- What are the problems with finding a function f which minimize MSE on the set of observed data $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$?
- Training Data is the collection of data we use to build our model. Often, it is a subset of all data we have available.
- Test Data is the collection of data on which we assess the accuracy of our model. It should be distinct from the training data.
- Goal: Use a model-building algorithm that builds model on **training data** in order to minimize MSE on a large number of unobserved **test data** points (x_0, y_0)
 - i.e. minimize

test MSE = Ave
$$\left(y_0 - \hat{f}(x_0)\right)^2$$

 Additionally, we can construct a number of models on the training data, and compare their performance on the test data in order to select the best model

An Example

ullet Suppose we have 50 observations on a quantitative response Y and quantitative predictor X

An Example

- ullet Suppose we have 50 observations on a quantitative response Y and quantitative predictor X
 - We plan to use 70% of our data (35 observations) as a training set.
 - We use the remaining 30% of the data (15 observations) as a test set.

An Example

- ullet Suppose we have 50 observations on a quantitative response Y and quantitative predictor X
 - We plan to use 70% of our data (35 observations) as a training set.
 - We use the remaining 30% of the data (15 observations) as a test set.
- We will fit three models:
 - 1 A linear model; low flexibility)
 - 2 A quintic model; medium flexibility
 - 3 A degree 15 model; high flexibility

Training Set

Data follows a non-linear trend

Model 1, 2, and 3

model	Train.MSE
Linear	0.677
Quintic	0.086
Poly	0.071

• We build a linear, quintic, and 17th degree polynomial model

Test Set

• Test data generated from same model as training data

Test Set with Models

model	Test.MSE
Linear	1.281
Quintic	0.326
Poly	1.822

• Models built on training data are plotted on test data

Test vs Train

• The 15th degree poly model fits the training data well. But doesn't do as well on test data.

model	Train.MSE	Test.MSE
Linear	0.677	1.281
Quintic	0.086	0.326
Poly	0.071	1.822

Section 2

Bias-Variance Trade-off

Suppose we consider a variety of model shapes to predict Y, with each model of increasing flexibility / complexity.

 What happens to the training MSE and the test MSE as model flexibility / complexity increases?

- What happens to the training MSE and the test MSE as model flexibility / complexity increases?
- As model flexibility / complexity increases, training MSE will decrease, but test MSE might not.

- What happens to the training MSE and the test MSE as model flexibility / complexity increases?
- As model flexibility / complexity increases, training MSE will decrease, but test MSE might not.
- Flexible / complex models may overfit data, meaning they fit patterns from the random error (noise), rather than the true model (signal)

- What happens to the training MSE and the test MSE as model flexibility / complexity increases?
- As model flexibility / complexity increases, training MSE will decrease, but test MSE might not.
- Flexible / complex models may overfit data, meaning they fit patterns from the random error (noise), rather than the true model (signal)
 - This leads to low train MSE, but high test MSE

- What happens to the training MSE and the test MSE as model flexibility / complexity increases?
- As model flexibility / complexity increases, training MSE will decrease, but test MSE might not.
- Flexible / complex models may **overfit** data, meaning they fit patterns from the random error (noise), rather than the true model (signal)
 - This leads to low train MSE, but high test MSE
- On the other hand, inflexible / simple models may be too rigid to fit the true pattern (lack the fidelity to convey signal)

- What happens to the training MSE and the test MSE as model flexibility / complexity increases?
- As model flexibility / complexity increases, training MSE will decrease, but test MSE might not.
- Flexible / complex models may overfit data, meaning they fit patterns from the random error (noise), rather than the true model (signal)
 - This leads to low train MSE, but high test MSE
- On the other hand, inflexible / simple models may be too rigid to fit the true pattern (lack the fidelity to convey signal)
 - This may lead to high train MSE and high test MSE

The U-curve for test MSE is a result of competition between two sources of error in a model

The U-curve for test MSE is a result of competition between two sources of error in a model

$$\mathrm{E}(y_0 - \hat{f}(x_0)) = \mathrm{Var}(\hat{f}(x_0)) + \left[\mathrm{Bias}(\hat{f}(x_0))\right]^2 + \mathrm{Var}(\epsilon)$$

The U-curve for test MSE is a result of competition between two sources of error in a model

Expected test MSE can be decomposed as the sum of 3 quantities:

$$\mathrm{E}(y_0 - \hat{f}(x_0)) = \mathrm{Var}(\hat{f}(x_0)) + \left[\mathrm{Bias}(\hat{f}(x_0))\right]^2 + \mathrm{Var}(\epsilon)$$

• Here $E(y_0 - \hat{f}(x_0))$ denotes expected test MSE at x_0 , if many models for f were built using a variety of random training data sets containing x_0

The U-curve for test MSE is a result of competition between two sources of error in a model

$$\mathrm{E}(y_0 - \hat{f}(x_0)) = \mathrm{Var}(\hat{f}(x_0)) + \left[\mathrm{Bias}(\hat{f}(x_0))\right]^2 + \mathrm{Var}(\epsilon)$$

- Here $E(y_0 \hat{f}(x_0))$ denotes expected test MSE at x_0 , if many models for f were built using a variety of random training data sets containing x_0
- Total expected test MSE is obtained by averaging across all possible x_0 in the test set.

The U-curve for test MSE is a result of competition between two sources of error in a model

$$\mathrm{E}(y_0 - \hat{f}(x_0)) = \mathrm{Var}(\hat{f}(x_0)) + \left[\mathrm{Bias}(\hat{f}(x_0))\right]^2 + \mathrm{Var}(\epsilon)$$

- Here $E(y_0 \hat{f}(x_0))$ denotes expected test MSE at x_0 , if many models for f were built using a variety of random training data sets containing x_0
- ullet Total expected test MSE is obtained by averaging across all possible x_0 in the test set.
- A proof is given in Section 7.3 of *The Elements of Statistical Learning* (or STA 336)

The U-curve for test MSE is a result of competition between two sources of error in a model

$$\mathrm{E}(y_0 - \hat{f}(x_0)) = \mathrm{Var}(\hat{f}(x_0)) + \left[\mathrm{Bias}(\hat{f}(x_0))\right]^2 + \mathrm{Var}(\epsilon)$$

- Here $E(y_0 \hat{f}(x_0))$ denotes expected test MSE at x_0 , if many models for f were built using a variety of random training data sets containing x_0
- Total expected test MSE is obtained by averaging across all possible x_0 in the test set.
- A proof is given in Section 7.3 of *The Elements of Statistical Learning* (or STA 336)
- To minimize MSE, we need to simultaneously minimize both variance and bias.

• Variance refers to the amount of variability in $\hat{f}(x_0)$ across random training sets containing x_0

- Variance refers to the amount of variability in $\hat{f}(x_0)$ across random training sets containing x_0
 - What type of models tend to have low/high variance?

- Variance refers to the amount of variability in $\hat{f}(x_0)$ across random training sets containing x_0
 - What type of models tend to have low/high variance?

- Bias refers to amount by which $\hat{f}(x_0)$ differs from the true value of $f(x_0)$, on average across random training sets.
 - Bias is produced by the difference between model shape assumptions and reality

- Variance refers to the amount of variability in $\hat{f}(x_0)$ across random training sets containing x_0
 - What type of models tend to have low/high variance?

- Bias refers to amount by which $\hat{f}(x_0)$ differs from the true value of $f(x_0)$, on average across random training sets.
 - Bias is produced by the difference between model shape assumptions and reality
 - What type of models tend to have low/high bias?

Bias-Variance Trade-off

Target Practice

