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Problems with Linear Model Diagnostic Plots

Outline

In today’s class, we will. . .
• Discuss theoretical foundation for linear regression
• Perform inference for simple linear models
• Implement simple linear regression in R
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Problems with Linear Model Diagnostic Plots

Section 1

Problems with Linear Model
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Problems with Linear Model Diagnostic Plots

Overview

Given any data set with n ≥ p, there is always a least squares regression equation

• i.e. a line that minimizes the squared sum of residuals.
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However, if we want to make predictions or perform statistical inference we need to make
sure key assumptions of randomness are met.
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Problems with Linear Model Diagnostic Plots

Common Problems

Most problems fall into 1 of 6 categories:

1 Non-linearity of relationship between predictors and response

2 Correlation of error terms

3 Non-constant variance in error

4 Outliers

5 High-leverage points

6 Collinearity of predictors
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Problems with Linear Model Diagnostic Plots

Non-linearity

In order to fit a linear model, we assume that in Y = F (X) + ϵ, we have

f (x) = β0 + β1 · x
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But if this assumption is false, our model is likely to have high bias.
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Problems with Linear Model Diagnostic Plots

Correlation of Errors

If errors are correlated, then knowing the values of one gives extra information about
values of others.
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Correlated errors lead to underestimates of residual standard error
• This produces incorrectly narrow confidence intervals, as well incorrectly small p-values
• It also leads to models with higher variance
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Problems with Linear Model Diagnostic Plots

Non-constant variance

For prediction and inference with LM, we assume that all residuals have the same variance.
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Estimates for regression coefficients (β0, β1) are still unbiased; However, estimated
standard errors SE are incorrect

• Confidence intervals and hypothesis tests should not be trusted
• There are other estimates for β0 and β1 that are still unbiased, but have lower

variance (and hence, have lower test MSE)
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Problems with Linear Model Diagnostic Plots

Outliers

Outliers are points which are extreme in either predictor or response values (or both)

• They may occur even if model assumptions are met, but still influence accuracy
estimates
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• Presence of outliers decrease estimated R2 and RSE compared to similar data set
without outliers.
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Problems with Linear Model Diagnostic Plots

High Leverage points

Outliers which have extreme values for both predictors and response are called
high-leverage points
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• Outliers can cause noticable changes in the parameter estimates, and can lead to less
accurate models
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Problems with Linear Model Diagnostic Plots

Collinearity

Collinearity occurs when predictors are highly correlated
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Collinearity produces high variance in estimates for β.
• We’ll talk more about this next week.
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Problems with Linear Model Diagnostic Plots

Section 2

Diagnostic Plots
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Problems with Linear Model Diagnostic Plots

A Valid Model

Let’s begin by creating a valid linear model to use as a baseline:

Y = 1 + 2X + ϵ ϵ ∼ N(0, 0.25)
set.seed(700)
X <- runif(80, 0, 1)
e <- rnorm(80, 0, .25)
Y <- 1 + 2*X + e
my_data <- data.frame(X,Y)

ggplot(my_data, aes(x = X , y = Y)) + geom_point()
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Problems with Linear Model Diagnostic Plots

Linear Model

my_mod<-lm(Y ~ X, data = my_data)
my_mod$coefficients

## (Intercept) X
## 1.025947 1.981375
summary(my_mod)$r.sq

## [1] 0.8275073

y = 1.03 + 1.98X
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Problems with Linear Model Diagnostic Plots

Model Diagnostics

Goal: Create graphics to assess how well data fits modeling assumptions.

The trade-off:
• The base R plot function can be used to quickly create all diagnostic plots necessary

• But we then are restricted to plot aesthetics

• Alternatively, we can use the gglm function in the package of the same name, created
and maintained by Reed alum, Grayson White.

• Provides the same diagnostic plots as plot, but with ggplot2 appearances and
customization.
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Problems with Linear Model Diagnostic Plots

Residual Plot

library(gglm)
ggplot(data = my_mod) +stat_fitted_resid()
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Residuals vs Fitted

What is represented along the horizontal axis? Why?

What should we look for?
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Problems with Linear Model Diagnostic Plots

QQ Plot

library(gglm)
ggplot(data = my_mod) +stat_normal_qq()
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What is represented along the horizontal and vertical axes? Why?

What should we look for?
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Problems with Linear Model Diagnostic Plots

Scale-Location Plot

library(gglm)
ggplot(data = my_mod) +stat_scale_location()
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Scale−Location

What is represented along the vertical axes? Why?

What should we look for?
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Problems with Linear Model Diagnostic Plots

Leverage Plot

library(gglm)
ggplot(data = my_mod) +stat_resid_leverage()
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Residual vs. Leverage

What is represented along the horizontal and vertical axes? Why?

What should we look for?
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Problems with Linear Model Diagnostic Plots

Plot Quartet
library(gglm)
gglm(my_mod)
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