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Foundations Inference for Linear Models Linear Models in R

Outline

In today’s class, we will. . .
• Discuss theoretical foundation for linear regression
• Perform inference for simple linear models
• Implement simple linear regression in R
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Foundations Inference for Linear Models Linear Models in R

Linear Regression

• Suppose we have one or more predictors (X1, X2, . . . , Xp) and a quantitative response
variable Y , and that

Y = f (X1, . . . , Xp) + ϵ

• The function f could theoretically take many forms. But the simplest form assumes f
is a linear function:

f (x1, x2, . . . , xp) = β0 + β1x1 + · · · + βpxp

• Note: a change in f is constant per unit change in any of the inputs.

• If Y depends on only 1 predictor X , then the linear model reduces to

y = f̂ (x) = β0 + β1x

• We’ll use Simple Linear Regression (SLR) to build intuition about all linear models
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Approximations and Estimates

• In reality, the relationship f between Y and X1, . . . , Xp may not be linear

• But many functions can be well-approximated by linear ones (especially when inputs
are restricted to a small range)

• But even if f is truly linear, we still have problems: We do not know the parameters
of the linear model.

• Based on data, we estimate the parameters to create an estimated linear model

f̂ = β̂0 + β̂1x1 + · · · + β̂pxp

• So we are estimating an approximation to a relationship between response and
predictors.
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SLR Review

Consider the relationship between a state’s high school grad rate Y and its poverty rate X .
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State−by−State Graduation and Poverty Rates

Poverty rate based 2020 US Census, obtained from US Census website 
 Grad rate based 2018−19 school year, obtained from NCES website

• Suppose we want to model Y as a
function of X

• Let’s assume a linear relationship

Y = β0 + β1X + ϵ
• Fitted Model:

Ŷ = β̂0 + β̂1X = 90 − 0.4X

Prof Wells (STA 295: Stat Learning) Simple Linear Regression February 6th, 2024 6 / 37



Foundations Inference for Linear Models Linear Models in R

SLR Review

Consider the relationship between a state’s high school grad rate Y and its poverty rate X .

70

75

80

85

90

10 14 18
Poverty Rate, X

H
ig

h 
S

ch
oo

l G
ra

du
at

io
n 

R
at

e,
 Y

State−by−State Graduation and Poverty Rates

Poverty rate based 2020 US Census, obtained from US Census website 
 Grad rate based 2018−19 school year, obtained from NCES website

• Suppose we want to model Y as a
function of X

• Let’s assume a linear relationship

Y = β0 + β1X + ϵ
• Fitted Model:
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Model Predictions

IA
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State−by−State Graduation and Poverty Rates

Poverty rate based 2020 US Census, obtained from US Census website 
 Grad rate based 2018−19 school year, obtained from NCES website

• Model:

Ŷ = 90 − 0.4 · X

• Iowa has a poverty rate of 11.6. What
does the model predict is Iowa’s
graduation rate?

Ŷ = 90 − 0.4 · 11.6 = 85.36
But Iowa’s actual graduation rate is 91.6

Prof Wells (STA 295: Stat Learning) Simple Linear Regression February 6th, 2024 8 / 37
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Residuals

• Residuals are the leftover variation in the data after accounting for model fit.
• Each observation (Xi , Yi ) has its own residual ei , which is the difference between the

observed (Yi ) and predicted (Ŷi ) value:

ei = Yi − Ŷi
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State−by−State Graduation and Poverty Rates, with Residual Heights

Iowa’s residual is
e = Y − Ŷ = 91.6 − 85.36 = 6.24
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Residual Plot

• To visualize the degree of accuracy of a linear model, we use residual plots:
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Residual Plot for Graduation and Poverty Rates

• Points preserve original x -position, but with y -position equal to residual.
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Residual Plot

In many cases, it is more convenient to look at the residual plot of residuals vs fitted
values (instead of vs X)

IA

−15

−10

−5

0

5

83 84 85 86 87

Predicted Grad Rate, ŷ
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Residual Plot for Graduation and Poverty Rates

• This residual plot can still be used to determine accuracy of model, but can be used
when we have more than 1 predictor.
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Residual Sum of Squares

• Define the Residual Sum of Squares (RSS) as

RSS =
n∑

i=1

(yi − ŷi )2 = e2
1 + · · · + e2

n

• Note that RSS = n · MSE.

• Using calculus or linear algebra, we can show that RSS is minimized when

β̂1 =
∑n

i=1(xi − x̄)(yi − ȳ)∑n
i=1(xi − x̄)2 β̂0 = ȳ − β̂1x̄

• Therefore, the least squares regression line has the lowest training MSE among all
linear models.

• Does this mean it has the lowest test MSE among linear models?
• No, as we will see later with penalized regression (Ch 6, ISLR)
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(yi − ŷi )2 = e2
1 + · · · + e2

n

• Note that RSS = n · MSE.

• Using calculus or linear algebra, we can show that RSS is minimized when

β̂1 =
∑n

i=1(xi − x̄)(yi − ȳ)∑n
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Measuring Model Accuracy (Alphabet Soup)

The following (closely related) measures are used to assess accuracy of a linear model:

• Residual Sum of Squares, Mean Squared Error and Root Mean Squared Error:

RSS =
n∑

i=1

(yi − ŷi )2 training MSE =
RSS

n
RMSE =

√
MSE

• Residual Standard Error (RSE or σ̂)

σ̂ = RSE =

√
1

n − 2
RSS =

√ n
n − 2

RMSE

• RSE is an estimate of the standard deviation σ of model error ϵ
• RSE measures the typical size of model errors

• The coefficient of determination R2

R2 = 1 −

∑n
i=1(yi − ŷi )2∑n
i=1(yi − ȳ)2

= 1 −
RSS
TSS

• R2 is the proportion of variation in the response explained by the model.
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i=1(yi − ȳ)2
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(yi − ŷi )2 training MSE =
RSS

n
RMSE =

√
MSE

• Residual Standard Error (RSE or σ̂)

σ̂ = RSE =

√
1

n − 2
RSS =

√ n
n − 2

RMSE

• RSE is an estimate of the standard deviation σ of model error ϵ
• RSE measures the typical size of model errors

• The coefficient of determination R2

R2 = 1 −

∑n
i=1(yi − ŷi )2∑n
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Section 2

Inference for Linear Models
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Statistical Inference

• Goal: Use statistics calculated from data to make estimates about unknown
parameters

• Parameters: β0, β1

• Statistics: β̂0, β̂1

• Tools: confidence intervals, hypothesis tests
• The Problems: Our model will change if built using a different random sample. So in

addition to estimates, we need to know about variability
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The Confidence Interval

• Confidence Intervals give estimates and express an amount of uncertainty we have
about those estimates

• A C -level confidence interval for a parameter θ using the statistic θ̂ takes the form

θ̂ ± t∗
C · SE(θ̂)

• The value t∗
C is the 1 − (1 − C)/2 quantile for the sampling distribution of θ̂

• i.e. if θ̂ is approximately Normally distributed and C = .95, then t∗
C ≈ 2.

• The value SE(θ̂) is the standard error of θ̂, or the standard deviation of the sampling
distribution
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Common Regression Assumptions

In order to use simple linear regression for inference, we require these assumptions:

1 Y is related to X by a simple linear regression model.

Y = β0 + β1X + ϵ

2 The errors e1, e2, . . . , en are independent of one another.

3 The errors have a common variance Var(ϵ) = σ2.

4 The errors are normally distributed: ϵ ∼ N(0, σ2)

If one or more of these conditions do not hold, our predictions may not be accurate and we
should be skeptical of inferential claims.
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The Sampling Distribution of β̂1

Assume the following true model:

f (x) = 12 + 0.7x ; ϵ ∼ N(0, 4)

f(x)

20
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16 20 24
x

y

Simulated Data from true model
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The Sampling Distribution of β̂1

Assume the following true model:

f (x) = 12 + 0.7x ; ϵ ∼ N(0, 4)
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The Sampling Distribution of β̂1
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The Sampling Distribution of β̂1

The Sampling Distribution has the following characteristics:

1 Centered at β1, i.e. E(β̂1) = β.

2 Var(β̂1) = σ2

SXX
.

• where SXX =
∑n

i=1(xi − x̄)2

3 β̂1|X ∼ N(β1, σ2

SXX
).
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Approximating the Sampling Dist. of β̂1

• Our best estimate of β1 is β̂1 (since the expected value β̂1 is β1)

• However, we have to estimate σ with the Residual Standard Error:

σ̂ = RSE =
√

RSS
n − 2

• Thus, the distribution of β̂1−β1
σ̂

isn’t Normal. . .
• Instead, it is the t-distribution with n − 2 degrees of freedom.
• Our confidence interval for β̂1 is thus

β̂1 ± tα/2,n−2 · SE(β̂1) where SE(β̂1) = σ̂√∑n
i=1(xi − x̄)2

Interpretation We are 95% confident that the true slope relating x and y lies between
lower and upper bound of this interval.

Prof Wells (STA 295: Stat Learning) Simple Linear Regression February 6th, 2024 28 / 37



Foundations Inference for Linear Models Linear Models in R

Approximating the Sampling Dist. of β̂1

• Our best estimate of β1 is β̂1 (since the expected value β̂1 is β1)
• However, we have to estimate σ with the Residual Standard Error:

σ̂ = RSE =
√

RSS
n − 2

• Thus, the distribution of β̂1−β1
σ̂

isn’t Normal. . .
• Instead, it is the t-distribution with n − 2 degrees of freedom.
• Our confidence interval for β̂1 is thus

β̂1 ± tα/2,n−2 · SE(β̂1) where SE(β̂1) = σ̂√∑n
i=1(xi − x̄)2

Interpretation We are 95% confident that the true slope relating x and y lies between
lower and upper bound of this interval.

Prof Wells (STA 295: Stat Learning) Simple Linear Regression February 6th, 2024 28 / 37



Foundations Inference for Linear Models Linear Models in R

Approximating the Sampling Dist. of β̂1

• Our best estimate of β1 is β̂1 (since the expected value β̂1 is β1)
• However, we have to estimate σ with the Residual Standard Error:

σ̂ = RSE =
√

RSS
n − 2

• Thus, the distribution of β̂1−β1
σ̂

isn’t Normal. . .

• Instead, it is the t-distribution with n − 2 degrees of freedom.
• Our confidence interval for β̂1 is thus

β̂1 ± tα/2,n−2 · SE(β̂1) where SE(β̂1) = σ̂√∑n
i=1(xi − x̄)2

Interpretation We are 95% confident that the true slope relating x and y lies between
lower and upper bound of this interval.

Prof Wells (STA 295: Stat Learning) Simple Linear Regression February 6th, 2024 28 / 37



Foundations Inference for Linear Models Linear Models in R

Approximating the Sampling Dist. of β̂1

• Our best estimate of β1 is β̂1 (since the expected value β̂1 is β1)
• However, we have to estimate σ with the Residual Standard Error:

σ̂ = RSE =
√

RSS
n − 2

• Thus, the distribution of β̂1−β1
σ̂

isn’t Normal. . .
• Instead, it is the t-distribution with n − 2 degrees of freedom.

• Our confidence interval for β̂1 is thus

β̂1 ± tα/2,n−2 · SE(β̂1) where SE(β̂1) = σ̂√∑n
i=1(xi − x̄)2

Interpretation We are 95% confident that the true slope relating x and y lies between
lower and upper bound of this interval.

Prof Wells (STA 295: Stat Learning) Simple Linear Regression February 6th, 2024 28 / 37



Foundations Inference for Linear Models Linear Models in R

Approximating the Sampling Dist. of β̂1

• Our best estimate of β1 is β̂1 (since the expected value β̂1 is β1)
• However, we have to estimate σ with the Residual Standard Error:

σ̂ = RSE =
√

RSS
n − 2

• Thus, the distribution of β̂1−β1
σ̂

isn’t Normal. . .
• Instead, it is the t-distribution with n − 2 degrees of freedom.
• Our confidence interval for β̂1 is thus

β̂1 ± tα/2,n−2 · SE(β̂1) where SE(β̂1) = σ̂√∑n
i=1(xi − x̄)2

Interpretation We are 95% confident that the true slope relating x and y lies between
lower and upper bound of this interval.

Prof Wells (STA 295: Stat Learning) Simple Linear Regression February 6th, 2024 28 / 37



Foundations Inference for Linear Models Linear Models in R

Approximating the Sampling Dist. of β̂1

• Our best estimate of β1 is β̂1 (since the expected value β̂1 is β1)
• However, we have to estimate σ with the Residual Standard Error:

σ̂ = RSE =
√

RSS
n − 2

• Thus, the distribution of β̂1−β1
σ̂

isn’t Normal. . .
• Instead, it is the t-distribution with n − 2 degrees of freedom.
• Our confidence interval for β̂1 is thus

β̂1 ± tα/2,n−2 · SE(β̂1) where SE(β̂1) = σ̂√∑n
i=1(xi − x̄)2

Interpretation We are 95% confident that the true slope relating x and y lies between
lower and upper bound of this interval.

Prof Wells (STA 295: Stat Learning) Simple Linear Regression February 6th, 2024 28 / 37



Foundations Inference for Linear Models Linear Models in R

Hypothesis test for β̂1

Suppose we are interested in testing the claim that the slope is zero.

H0 : β0
1 = 0 vs HA : β0

1 ̸= 0

• Consider the statistic t given by

t = β̂1

SE(β̂1)

• Then t will be t-distributed with n − 2 degrees of freedom and SE(β̂1) calculated the
same as in the CI.

• The p-value for an observed test statistic t is the probability that a randomly chosen
value from the t-dist is larger in absolute value than |t|.

• An observed t with p-value less than a desired significance level (often α = 0.05)
gives good evidence against the null-hypothesis.
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Inference for other parameters in the linear model

• We can also perform inference for β0, although it is often less interesting in practice
(why?)

• We proceed as before, using a t distribution to estimate the sampling distribution of β̂0.

• However, the SE of β̂0 is

SE(β̂0) = σ̂2

(
1
n + x̄√∑n

i=1(xi − x̄)2

)
• Inference is even possible for combinations of β0 and β1 (i.e β0 + β1x for any fixed

value of x)
• Why might we want to obtain a confidence interval for β0 + β1x?
• The associated statistic is again t-distributed, although with more complicated SE.
• For details, see DeGroot and Schervish “Probability and Statistics” (or take STA 336)
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Section 3

Linear Models in R
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Creating Linear Models in R

Consider the povery data set, consisting of high school grad rate Graduates and its
poverty rate Poverty:

## # A tibble: 6 x 3
## state Graduates Poverty
## <chr> <dbl> <dbl>
## 1 Alabama 91.7 17.1
## 2 Alaska 80.4 9.5
## 3 Arizona 77.8 15.3
## 4 Arkansas 87.6 18
## 5 California 84.5 13.7
## 6 Colorado 81.1 12.2

• We fit a linear model using the lm function in R:
poverty_mod <- lm(Graduates ~ Poverty, data = poverty)
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Summary of the Model

• When we use the lm function, R computes several values related to the linear model

• We can obtain a high-level summary of the model using summary()
summary(poverty_mod)

##
## Call:
## lm(formula = Graduates ~ Poverty, data = poverty)
##
## Residuals:
## Min 1Q Median 3Q Max
## -14.541 -2.774 0.876 2.543 7.758
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 90.0615 2.8347 31.772 <2e-16 ***
## Poverty -0.3579 0.2056 -1.741 0.088 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.396 on 49 degrees of freedom
## Multiple R-squared: 0.05823, Adjusted R-squared: 0.03901
## F-statistic: 3.03 on 1 and 49 DF, p-value: 0.08802
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Accessing Summary Statistics

• The summary table is itself an R object, with many attributes:

mod_summary <- summary(poverty_mod)
names(mod_summary)

## [1] "call" "terms" "residuals" "coefficients"
## [5] "aliased" "sigma" "df" "r.squared"
## [9] "adj.r.squared" "fstatistic" "cov.unscaled"

• To access these attributes, we can preface the name of the attribute with the
summary table name and $:

mod_summary$r.squared

## [1] 0.05823356
mod_summary$sigma

## [1] 4.395734
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Accessing Model Components

• When R creates a linear model, it saves many attributes in the model object

names(poverty_mod)

## [1] "coefficients" "residuals" "effects" "rank"
## [5] "fitted.values" "assign" "qr" "df.residual"
## [9] "xlevels" "call" "terms" "model"

• To access these attributes, we can preface the name of the attribute with the model
name and $.

• Two of the most useful attributes are fitted.values and residuals:
poverty_mod$fitted.values

## 1 2 3 4 5 6
## 83.94205 86.66182 84.58621 83.61997 85.15879 85.69559

poverty_mod$residuals

## 1 2 3 4 5 6
## 7.7579486 -6.2618192 -6.7862069 3.9800264 -0.6587896 -4.5955859
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Predictions from Linear Models

• The linear model object in R can be used to calculate predictions made by the model.

• Let’s predict the graduation rate for states with poverty rates of 3, 10, and 15.
• We first make a data frame storing our new data

new_states <- data.frame(Poverty = c(3, 10, 15))

## Poverty
## 1 3
## 2 10
## 3 15

• The new data must contain a column with the same name as the predictor in the
original data (Poverty in this case)
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Predictions from Linear Models

• We can use the predict function to have R make predictions.

• The predict function takes two inputs: a model object and the newdata on which
predictions will be made.

prediction <- predict(object = poverty_mod, newdata = new_states)

## 1 2 3
## 88.98794 86.48289 84.69357

• We can append this to our new_states data frame:
new_states <- cbind(new_states, prediction)

## Poverty prediction
## 1 3 88.98794
## 2 10 86.48289
## 3 15 84.69357

• Let’s now practice in R
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