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Outline

In today's class, we will. ..
® Discuss theoretical foundation for linear regression
® Perform inference for simple linear models

® Implement simple linear regression in R
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Linear Regression

® Suppose we have one or more predictors (X1, Xz, ..., Xp) and a quantitative response
variable Y, and that
Y:f(Xl,...,Xp)+€
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Linear Regression

® Suppose we have one or more predictors (X1, Xz, ..., Xp) and a quantitative response
variable Y, and that
Y:f(Xl,...,Xp)+€

® The function f could theoretically take many forms. But the simplest form assumes f
is a linear function:

f(X13X27"'7XP) :ﬁ0+ﬂlxl+“'+ﬁpo
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Linear Regression

® Suppose we have one or more predictors (X1, Xz, ..., Xp) and a quantitative response

variable Y, and that
Y:f(Xl,...,Xp)+€

® The function f could theoretically take many forms. But the simplest form assumes f
is a linear function:

f(X13X27"'7XP) :ﬁ0+ﬂlxl+“'+ﬁpo

® Note: a change in f is constant per unit change in any of the inputs.
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Linear Regression

® Suppose we have one or more predictors (X1, Xz, ..., Xp) and a quantitative response
variable Y, and that

Y:f(Xl,...,Xp)+€

® The function f could theoretically take many forms. But the simplest form assumes f
is a linear function:

f(X13X27"'7XP) :ﬁ0+ﬂlxl+“'+ﬁpo

® Note: a change in f is constant per unit change in any of the inputs.

® |f Y depends on only 1 predictor X, then the linear model reduces to

y= ?(X) = fo + Bix
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Linear Regression

® Suppose we have one or more predictors (X1, Xz, ..., Xp) and a quantitative response
variable Y, and that
Y:f(Xl,...,Xp)+€

® The function f could theoretically take many forms. But the simplest form assumes f
is a linear function:

f(X13X27"'7XP) :ﬁ0+ﬂlxl+“'+ﬁpo

® Note: a change in f is constant per unit change in any of the inputs.

® |f Y depends on only 1 predictor X, then the linear model reduces to

y= ?(X) = fo + Bix

® We'll use Simple Linear Regression (SLR) to build intuition about all linear models
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Approximations and Estimates

® In reality, the relationship f between Y and Xi,..., X, may not be linear
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Approximations and Estimates

® In reality, the relationship f between Y and Xi,..., X, may not be linear

® But many functions can be well-approximated by linear ones (especially when inputs
are restricted to a small range)
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Approximations and Estimates

® In reality, the relationship f between Y and Xi,..., X, may not be linear

® But many functions can be well-approximated by linear ones (especially when inputs
are restricted to a small range)

® But even if f is truly linear, we still have problems: We do not know the parameters
of the linear model.
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Approximations and Estimates

® In reality, the relationship f between Y and Xi,..., X, may not be linear

® But many functions can be well-approximated by linear ones (especially when inputs
are restricted to a small range)

® But even if f is truly linear, we still have problems: We do not know the parameters
of the linear model.

® Based on data, we estimate the parameters to create an estimated linear model

?:Bo+B1X1+"-+/3’po
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Approximations and Estimates

® In reality, the relationship f between Y and Xi,..., X, may not be linear

® But many functions can be well-approximated by linear ones (especially when inputs
are restricted to a small range)

® But even if f is truly linear, we still have problems: We do not know the parameters
of the linear model.

® Based on data, we estimate the parameters to create an estimated linear model

?:Bo+B1X1+'--+/3’po

® So we are estimating an approximation to a relationship between response and
predictors.
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SLR Review

Consider the relationship between a state's high school grad rate Y and its poverty rate X.
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SLR Review

Consider the relationship between a state's high school grad rate Y and its poverty rate X.
State—by-State Graduation and Poverty Ra
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Model Predictions

State—by-State Graduation and Poverty Ra
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Model Predictions
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Model Predictions
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Model Predictions
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Residuals

® Residuals are the leftover variation in the data after accounting for model fit.

® Each observation (X, Y;) has its own residual e;, which is the difference between the
observed (Y;) and predicted (Y;) value:

e=Yi—Y;
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Residuals

® Residuals are the leftover variation in the data after accounting for model fit.

® Each observation (X, Y;) has its own residual e;, which is the difference between the
observed (Y;) and predicted (Y;) value:

e=Yi—Y;

State-by-State Graduation and Poverty Rates, with Residual Heights

High School Graduation Rate, Y

1a
Poverty Rate, X
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Prof Wells (STA 295: Stat Learn Simple Linear Regression



Foundations
0O0000000e00000

Residuals

® Residuals are the leftover variation in the data after accounting for model fit.

® Each observation (X;, Y;) has its own residual e;, which is the difference between the

observed (Y;) and predicted (Y;) value:
e=Y -V
State-by-State Graduation and Poverty Rates, with Residual Heights

e=6.24

High School Graduation Rate, Y

1a
Poverty Rate, X

® |owa’s residual is .
e=Y—-—Y =09016—-85.36=06.24
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Residual Plot

® To visualize the degree of accuracy of a linear model, we use residual plots:

Residual Plot for Graduation and Poverty Rates

Residuals for Graduation Rate

i
Poverty Rate, X
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Residual Plot

® To visualize the degree of accuracy of a linear model, we use residual plots:

Residual Plot for Graduation and Poverty Rates

Residuals for Graduation Rate

14
Poverty Rate, X

® Points preserve original x-position, but with y-position equal to residual.

Prof Wells (STA 295: Stat Learning) Simple Linear Regression February 6th, 2024



Foundations
0000000000800 0

Residual Plot

® To visualize the degree of accuracy of a linear model, we use residual plots:

Residual Plot for Graduation and Poverty Rates

Residuals for Graduation Rate

14
Poverty Rate, X

® Points preserve original x-position, but with y-position equal to residual.
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Residual Plot

In many cases, it is more convenient to look at the residual plot of residuals vs fitted
values (instead of vs X)
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Residual Plot

In many cases, it is more convenient to look at the residual plot of residuals vs fitted
values (instead of vs X)
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Residual Plot

In many cases, it is more convenient to look at the residual plot of residuals vs fitted
values (instead of vs X)

Residual Plot for Graduation and Poverty Rates

Residuals for Graduation Rate, e

85
Predicted Grad Rat§,

® This residual plot can still be used to determine accuracy of model, but can be used
when we have more than 1 predictor.
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Residual Sum of Squares

® Define the Residual Sum of Squares (RSS) as

n

RSS =3 (i~ f =4t

i=1
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Residual Sum of Squares

® Define the Residual Sum of Squares (RSS) as

n
RSS=> (vi—y) =€+ +e
i=1
® Note that RSS = n- MSE.
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Residual Sum of Squares

® Define the Residual Sum of Squares (RSS) as

n
RSS=> (vi—y) =€+ +e
i=1
® Note that RSS = n- MSE.

® Using calculus or linear algebra, we can show that RSS is minimized when

= Zizl(:il(xfx)(yxi)2 P hey-ba
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Residual Sum of Squares

® Define the Residual Sum of Squares (RSS) as

n
RSS=> (vi—y) =€+ +e
i=1
® Note that RSS = n- MSE.

® Using calculus or linear algebra, we can show that RSS is minimized when
. (i = X)(yi — ¥) A= A
&2271" Y Bo =y — Bix
Z,‘:1(Xf - X)
® Therefore, the least squares regression line has the lowest training MSE among all
linear models.
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Residual Sum of Squares

® Define the Residual Sum of Squares (RSS) as

n
RSS=> (vi—y) =€+ +e
i=1
® Note that RSS = n- MSE.

® Using calculus or linear algebra, we can show that RSS is minimized when
. (i = X)(yi — ¥) A= A
512271,, Y Bo =y — Bix
Z,‘:1(Xf - X)
Therefore, the least squares regression line has the lowest training MSE among all
linear models.

® Does this mean it has the lowest test MSE among linear models?
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Residual Sum of Squares

® Define the Residual Sum of Squares (RSS) as

n
RSS=> (vi—y) =€+ +e
i=1
® Note that RSS = n- MSE.

® Using calculus or linear algebra, we can show that RSS is minimized when
. (i = X)(yi — ¥) A= A
512271,, Y Bo =y — Bix
Z,‘:1(Xf - X)
Therefore, the least squares regression line has the lowest training MSE among all
linear models.

® Does this mean it has the lowest test MSE among linear models?

® No, as we will see later with penalized regression (Ch 6, ISLR)
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Measuring Model Accuracy (Alphabet Soup)

The following (closely related) measures are used to assess accuracy of a linear model:
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Measuring Model Accuracy (Alphabet Soup)

The following (closely related) measures are used to assess accuracy of a linear model:

® Residual Sum of Squares, Mean Squared Error and Root Mean Squared Error:

n

RSS
RSS = Z(y,— ~9)*  training MSE= ——  RMSE = vMSE
i=1
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Measuring Model Accuracy (Alphabet Soup)

The following (closely related) measures are used to assess accuracy of a linear model:

® Residual Sum of Squares, Mean Squared Error and Root Mean Squared Error:

n

RSS
RSS = Z(y,— ~9)*  training MSE= ——  RMSE = vMSE
i=1

® Residual Standard Error (RSE or &)

UiRSS—,/iRMSE
n—2 n—2
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Measuring Model Accuracy (Alphabet Soup)

The following (closely related) measures are used to assess accuracy of a linear model:

® Residual Sum of Squares, Mean Squared Error and Root Mean Squared Error:

n

RSS
RSS = Z(y,— ~9)*  training MSE= ——  RMSE = vMSE
i=1

® Residual Standard Error (RSE or &)

UiRSS—,/iRMSE
n—2 n—2

® RSE is an estimate of the standard deviation o of model error €
® RSE measures the typical size of model errors
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Measuring Model Accuracy (Alphabet Soup)

The following (closely related) measures are used to assess accuracy of a linear model:

® Residual Sum of Squares, Mean Squared Error and Root Mean Squared Error:

n
RSS
RSS = Z(y,— ~9)*  training MSE= ——  RMSE = vMSE

i=1

® Residual Standard Error (RSE or &)

UiRSS—,/iRMSE
n—2 n—2

® RSE is an estimate of the standard deviation o of model error €
® RSE measures the typical size of model errors

® The coefficient of determination R?
S i —9i)? 1 RSS

R?=1- &k —=1-
Z;:1(}’i - .y)2 TSS
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Measuring Model Accuracy (Alphabet Soup)

The following (closely related) measures are used to assess accuracy of a linear model:

® Residual Sum of Squares, Mean Squared Error and Root Mean Squared Error:

n
RSS
RSS = Z(y,— ~9)*  training MSE= ——  RMSE = vMSE

i=1

® Residual Standard Error (RSE or &)

UiRSS—,/iRMSE
n—2 n—2

® RSE is an estimate of the standard deviation o of model error €
® RSE measures the typical size of model errors

® The coefficient of determination R?
S i —9i)? 1 RSS

RR=1-ZF — o =1 —
Z;:1(}’i _y)2 TSS

® R?is the proportion of variation in the response explained by the model.
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Section 2

Inference for Linear Models
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Statistical Inference

® Goal: Use statistics calculated from data to make estimates about unknown
parameters
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Statistical Inference

® Goal: Use statistics calculated from data to make estimates about unknown
parameters

® Parameters: [, (1
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Statistical Inference

® Goal: Use statistics calculated from data to make estimates about unknown
parameters

® Parameters: [, (1

® Statistics: Bo, 31

Prof Wells (STA 295: Stat Learn Simple Linear Regression ruary 6th, 2024



Inference for Linear Models
O@000000000000

Statistical Inference

Goal: Use statistics calculated from data to make estimates about unknown
parameters

Parameters: 5o, f1

® Statistics: Bo, 31

Tools: confidence intervals, hypothesis tests
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Statistical Inference

® Goal: Use statistics calculated from data to make estimates about unknown
parameters

® Parameters: (5o, 51
® Statistics: Bo, 31
® Tools: confidence intervals, hypothesis tests

® The Problems: Our model will change if built using a different random sample. So in
addition to estimates, we need to know about variability
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The Confidence Interval

® Confidence Intervals give estimates and express an amount of uncertainty we have
about those estimates
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The Confidence Interval

® Confidence Intervals give estimates and express an amount of uncertainty we have
about those estimates

® A C-level confidence interval for a parameter 6 using the statistic 0 takes the form

0 + t - SE()
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The Confidence Interval

® Confidence Intervals give estimates and express an amount of uncertainty we have
about those estimates

® A C-level confidence interval for a parameter 6 using the statistic 0 takes the form

0 + t - SE()

® The value t{ is the 1 — (1 — C)/2 quantile for the sampling distribution of §

®ie iffis approximately Normally distributed and C = .95, then t; ~ 2.
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The Confidence Interval

Confidence Intervals give estimates and express an amount of uncertainty we have
about those estimates

® A C-level confidence interval for a parameter 6 using the statistic 0 takes the form

0 + t - SE()

The value tf is the 1 — (1 — C)/2 quantile for the sampling distribution of §

®ie iffis approximately Normally distributed and C = .95, then t; ~ 2.

The value SE(@) is the standard error of @, or the standard deviation of the sampling
distribution
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Common Regression Assumptions

In order to use simple linear regression for inference, we require these assumptions:
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Common Regression Assumptions

In order to use simple linear regression for inference, we require these assumptions:

@ Y is related to X by a simple linear regression model.

Y =00+ 51X +e€
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Common Regression Assumptions

In order to use simple linear regression for inference, we require these assumptions:
@ Y is related to X by a simple linear regression model.

Y =00+ 51X +e€

® The errors e1, e, ..., e, are independent of one another.
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Common Regression Assumptions

In order to use simple linear regression for inference, we require these assumptions:
@ Y is related to X by a simple linear regression model.
Y =po+ X +e
® The errors e1, e, ..., e, are independent of one another.

© The errors have a common variance Var(e) = o?.
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Common Regression Assumptions

In order to use simple linear regression for inference, we require these assumptions:
@ Y is related to X by a simple linear regression model.
Y=08+p/X+e
® The errors e1, e, ..., e, are independent of one another.
© The errors have a common variance Var(e) = o?.

© The errors are normally distributed: ¢ ~ N(0, 5°)
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Common Regression Assumptions

In order to use simple linear regression for inference, we require these assumptions:

@ Y is related to X by a simple linear regression model.

Y =08+ BX+e
® The errors e1, e, ..., e, are independent of one another.
© The errors have a common variance Var(e) = o?.
© The errors are normally distributed: ¢ ~ N(0, 5°)

If one or more of these conditions do not hold, our predictions may not be accurate and we
should be skeptical of inferential claims.

Prof Wells (STA 295: Stat Learn Simple Linear Regression ruary 6th, 2024



Inference for Linear Models
0O000@000000000

The Sampling Distribution of B

Assume the following true model:

f(x)=1240.7x; e~ N(0,4)
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The Sampling Distribution of B

Assume the following true model:

f(x)=1240.7x; e~ N(0,4)

Simulated Data from true model
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The Sampling Distribution of B

Assume the following true model:

f(x)=1240.7x; e~ N(0,4)

Estimate for f based on 1 simulation

30

25+
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16 20 24
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The Sampling Distribution of B

Assume the following true model:

f(x)=1240.7x; e~ N(0,4)

Estimates for f based on 1000 simulations
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The Sampling Distribution of /?1

Sampling distribution of ﬁl
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The Sampling Distribution of B

The Sampling Distribution has the following characteristics:

® Centered at 31, i.e. E(Bl) = 3.
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The Sampling Distribution of B

The Sampling Distribution has the following characteristics:

® Centered at 31, i.e. E(Bl) = 3.
® Var(f) = &

Sxx *

® where Sxx = 27:1()(,- —x)?
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The Sampling Distribution of B

The Sampling Distribution has the following characteristics:

® Centered at 31, i.e. E(Bl) = 3.
® Var(f) = &

Sxx *

® where Sxx = 27:1()(,- —x)?

© HilX ~ N(Bi, &)

Sxx
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Approximating the Sampling Dist. of B

® Qur best estimate of (i is /3’1 (since the expected value 31 is 1)

Prof Wells (STA 295: Stat Learning) Simple Linear Regression February 6th, 2024



Inference for Linear Models
00000000000 e00

Approximating the Sampling Dist. of /3’1

® Qur best estimate of (i is /3’1 (since the expected value /3)1 is 1)

® However, we have to estimate o with the Residual Standard Error:

RSS

6 = RSE = —>
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Approximating the Sampling Dist. of /3’1

® Qur best estimate of (i is /3’1 (since the expected value /3)1 is 1)

® However, we have to estimate o with the Residual Standard Error:

RSS

6 = RSE = —>

® Thus, the distribution of @ isn't Normal. ..
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Approximating the Sampling Dist. of /3’1

® Qur best estimate of (i is /3’1 (since the expected value /3)1 is 1)

® However, we have to estimate o with the Residual Standard Error:

6 =RSE = RSS
n—2
® Thus, the distribution of @ isn't Normal. ..
® |Instead, it is the t-distribution with n — 2 degrees of freedom.
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Approximating the Sampling Dist. of /3’1

® Qur best estimate of (i is /3’1 (since the expected value /3)1 is 1)

® However, we have to estimate o with the Residual Standard Error:

6 =RSE = RSS
n—2
® Thus, the distribution of @ isn't Normal. ..
® |Instead, it is the t-distribution with n — 2 degrees of freedom.
® Our confidence interval for j; is thus

31 + taj2,n—2 " SE(Bl) where SE([‘jl) =
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Approximating the Sampling Dist. of /3’1

® Qur best estimate of (i is /3’1 (since the expected value /3)1 is 1)

® However, we have to estimate o with the Residual Standard Error:

6 =RSE = RSS
n—2
® Thus, the distribution of @ isn't Normal. ..
® |Instead, it is the t-distribution with n — 2 degrees of freedom.
® Qur confidence interval for ,31 is thus

31 + taj2,n—2 " SE(Bl) where SE([%) =

o
i —X)?

n
2l
Interpretation We are 95% confident that the true slope relating x and y lies between
lower and upper bound of this interval.
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Hypothesis test for /31

Suppose we are interested in testing the claim that the slope is zero.

Ho:B80=0 vs Ha:p8)+#0
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Hypothesis test for /31

Suppose we are interested in testing the claim that the slope is zero.

Ho:B80=0 vs Ha:p8)+#0
® Consider the statistic t given by
__ B
SE(B1)

® Then t will be t-distributed with n — 2 degrees of freedom and SE(Bl) calculated the
same as in the Cl.
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Hypothesis test for /31

Suppose we are interested in testing the claim that the slope is zero.

Ho:B80=0 vs Ha:p8)+#0
® Consider the statistic t given by
__ B
SE(B1)

® Then t will be t-distributed with n — 2 degrees of freedom and SE(Bl) calculated the
same as in the Cl.

® The p-value for an observed test statistic t is the probability that a randomly chosen
value from the t-dist is larger in absolute value than |t].
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Hypothesis test for /31

Suppose we are interested in testing the claim that the slope is zero.

Ho:B80=0 vs Ha:p8)+#0
® Consider the statistic t given by
__ B
SE(B1)

® Then t will be t-distributed with n — 2 degrees of freedom and SE(Bl) calculated the
same as in the Cl.

® The p-value for an observed test statistic t is the probability that a randomly chosen
value from the t-dist is larger in absolute value than |t].

® An observed t with p-value less than a desired significance level (often oz = 0.05)
gives good evidence against the null-hypothesis.
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Inference for other parameters in the linear model

® We can also perform inference for (o, although it is often less interesting in practice
(why?)
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Inference for other parameters in the linear model

® We can also perform inference for (o, although it is often less interesting in practice
(why?)
® \We proceed as before, using a t distribution to estimate the sampling distribution of /3’0.

® However, the SE of Bo is
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Inference for other parameters in the linear model

® We can also perform inference for (o, although it is often less interesting in practice
(why?)
® \We proceed as before, using a t distribution to estimate the sampling distribution of /3’0.

® However, the SE of Bo is

>
| =
1

n 27:1()(" - )_()2

® Inference is even possible for combinations of 5y and $1 (i.e So + B1x for any fixed
value of x)
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Inference for other parameters in the linear model

® We can also perform inference for (o, although it is often less interesting in practice
(why?)
® \We proceed as before, using a t distribution to estimate the sampling distribution of /3’0.

® However, the SE of Bo is

>
| =
1

n 27:1()(" - )_()2

® Inference is even possible for combinations of 5y and $1 (i.e So + B1x for any fixed
value of x)

® Why might we want to obtain a confidence interval for 8y + B1x?
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Inference for other parameters in the linear model

® We can also perform inference for (o, although it is often less interesting in practice
(why?)
® \We proceed as before, using a t distribution to estimate the sampling distribution of /3’0.

® However, the SE of Bo is

>
| =
1

n Z?:1(Xi - )_()2

® Inference is even possible for combinations of 5y and $1 (i.e So + B1x for any fixed
value of x)

® Why might we want to obtain a confidence interval for 8y + B1x?

® The associated statistic is again t-distributed, although with more complicated SE.
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Inference for other parameters in the linear model

® We can also perform inference for (o, although it is often less interesting in practice
(why?)

® \We proceed as before, using a t distribution to estimate the sampling distribution of /3’0.
® However, the SE of Bo is

wn
=
S >
N—r
I
Q>
N
—
+
I

0 X)

® Inference is even possible for combinations of 5y and $1 (i.e So + B1x for any fixed
value of x)

® Why might we want to obtain a confidence interval for 8y + B1x?
® The associated statistic is again t-distributed, although with more complicated SE.

® For details, see DeGroot and Schervish “Probability and Statistics” (or take STA 336)
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Linear Models in R
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Creating Linear Models in R

Consider the povery data set, consisting of high school grad rate Graduates and its
poverty rate Poverty:
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Creating Linear Models in R

Consider the povery data set, consisting of high school grad rate Graduates and its
poverty rate Poverty:

## # A tibble: 6 x 3

## state Graduates Poverty
##  <chr> <dbl>  <dbl>
## 1 Alabama 91.7 17.1
## 2 Alaska 80.4 9.5
## 3 Arizona 77.8 15.3
## 4 Arkansas 87.6 18

## 5 California 84.5 13.7
## 6 Colorado 81.1 12.2
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Creating Linear Models in R

Consider the povery data set, consisting of high school grad rate Graduates and its
poverty rate Poverty:

## # A tibble: 6 x 3

## state Graduates Poverty
##  <chr> <dbl>  <dbl>
## 1 Alabama 91.7 17.1
## 2 Alaska 80.4 9.5
## 3 Arizona 77.8 15.3
## 4 Arkansas 87.6 18

## 5 California 84.5 13.7
## 6 Colorado 81.1 12.2

® We fit a linear model using the 1m function in R:

poverty_mod <- 1lm(Graduates ~ Poverty, poverty)
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Summary of the Model

® When we use the 1m function, R computes several values related to the linear model
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Summary of the Model

® When we use the 1m function, R computes several values related to the linear model

® We can obtain a high-level summary of the model using summary ()
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Summary of the Model

® When we use the 1m function, R computes several values related to the linear model

® We can obtain a high-level summary of the model using summary ()
summary (poverty_mod)

##

## Call:

## 1m(formula = Graduates ~ Poverty, data = poverty)

##

## Residuals:

## Min 1Q Median 3Q Max

## -14.541 -2.774 0.876 2.543 7.758

##

## Coefficients:

## Estimate Std. Error t value Pr(>Itl)

## (Intercept) 90.0615 2.8347 31.772 <2e-16 *x*x

## Poverty -0.3579 0.2056 -1.741 0.088 .

## ——-

## Signif. codes: O '*x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 4.396 on 49 degrees of freedom

## Multiple R-squared: 0.05823, Adjusted R-squared: 0.03901

## F-statistic: 3.03 on 1 and 49 DF, p-value: 0.08802
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Accessing Summary Statistics

® The summary table is itself an R object, with many attributes:
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Accessing Summary Statistics

® The summary table is itself an R object, with many attributes:

mod_summary <- summary(poverty_mod)
names (mod_summary)

## [1] "call" "terms" "residuals" "coefficients"
## [5] "aliased" "sigma" "df" "r.squared"
## [9] "adj.r.squared" "fstatistic" "cov.unscaled"

Prof Wells (STA 295: Stat Learning) Simple Linear Regression

February 6th, 2024



Linear Models in R
[e]e]e] le]ele)

Accessing Summary Statistics

® The summary table is itself an R object, with many attributes:

mod_summary <- summary(poverty_mod)
names (mod_summary)

## [1] "call" "terms" "residuals" "coefficients"
## [5] "aliased" "sigma" "df" "r.squared"
## [9] "adj.r.squared" "fstatistic" "cov.unscaled"

® To access these attributes, we can preface the name of the attribute with the
summary table name and $:
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Accessing Summary Statistics

® The summary table is itself an R object, with many attributes:

mod_summary <- summary(poverty_mod)
names (mod_summary)

## [1] "call" "terms" "residuals" "coefficients"
## [5] "aliased" "sigma" "df" "r.squared"
## [9] "adj.r.squared" "fstatistic" "cov.unscaled"

® To access these attributes, we can preface the name of the attribute with the
summary table name and $:

mod_summary$r.squared

## [1] 0.05823356
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Accessing Summary Statistics

® The summary table is itself an R object, with many attributes:

mod_summary <- summary(poverty_mod)
names (mod_summary)

## [1] "call" "terms" "residuals" "coefficients"
## [5] "aliased" "sigma" "df" "r.squared"
## [9] "adj.r.squared" "fstatistic" "cov.unscaled"

® To access these attributes, we can preface the name of the attribute with the
summary table name and $:

mod_summary$r.squared

## [1] 0.05823356

mod_summary$sigma

## [1] 4.395734
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Accessing Model Components

® When R creates a linear model, it saves many attributes in the model object
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Accessing Model Components

® When R creates a linear model, it saves many attributes in the model object
names (poverty_mod)

## [1] "coefficients" '"residuals" "effects" "rank"
## [5] "fitted.values" "assign" "qr" "df .residual"
## [9] "xlevels" "call" "terms" "model"

Prof Wells (STA 295: Stat Learning) Simple Linear Regression February 6th, 2024



Linear Models in R
0000e00

Accessing Model Components

® When R creates a linear model, it saves many attributes in the model object
names (poverty_mod)

## [1] "coefficients" '"residuals" "effects" "rank"
## [5] "fitted.values" "assign" "qr" "df .residual"
## [9] "xlevels" "call" "terms" "model"

® To access these attributes, we can preface the name of the attribute with the model
name and $.

® Two of the most useful attributes are fitted.values and residuals:
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Accessing Model Components

® When R creates a linear model, it saves many attributes in the model object

names (poverty_mod)

## [1] "coefficients" '"residuals" "effects" "rank"
## [5] "fitted.values" "assign" "qr" "df .residual"
## [9] "xlevels" "call" "terms" "model"

® To access these attributes, we can preface the name of the attribute with the model
name and $.

® Two of the most useful attributes are fitted.values and residuals:
poverty_mod$fitted.values

## 1 2 3 4 5 6
## 83.94205 86.66182 84.58621 83.61997 85.15879 85.69559
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Accessing Model Components

® When R creates a linear model, it saves many attributes in the model object

names (poverty_mod)

## [1] "coefficients" '"residuals" "effects" "rank"
## [5] "fitted.values" "assign" "qr" "df .residual"
## [9] "xlevels" "call" "terms" "model"

® To access these attributes, we can preface the name of the attribute with the model
name and $.

® Two of the most useful attributes are fitted.values and residuals:
poverty_mod$fitted.values

## 1 2 3 4 5 6
## 83.94205 86.66182 84.58621 83.61997 85.15879 85.69559

poverty_mod$residuals

## 1 2 3 4 5 6
## 7.7579486 -6.2618192 -6.7862069 3.9800264 -0.6587896 -4.5955859
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Predictions from Linear Models

® The linear model object in R can be used to calculate predictions made by the model.
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Predictions from Linear Models

® The linear model object in R can be used to calculate predictions made by the model.

® Let's predict the graduation rate for states with poverty rates of 3, 10, and 15.
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Predictions from Linear Models

® The linear model object in R can be used to calculate predictions made by the model.
® Let's predict the graduation rate for states with poverty rates of 3, 10, and 15.

® We first make a data frame storing our new data
new_states <- data.frame( c(3, 10, 15))

##  Poverty
## 1 3
## 2 10
## 3 15

® The new data must contain a column with the same name as the predictor in the
original data (Poverty in this case)
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Predictions from Linear Models

® We can use the predict function to have R make predictions.
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Predictions from Linear Models

® We can use the predict function to have R make predictions.

® The predict function takes two inputs: a model object and the newdata on which
predictions will be made.
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Predictions from Linear Models

® We can use the predict function to have R make predictions.

® The predict function takes two inputs: a model object and the newdata on which
predictions will be made.

prediction <- predict( poverty_mod, new_states)

## 1 2 3
## 88.98794 86.48289 84.69357
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Predictions from Linear Models

® We can use the predict function to have R make predictions.

® The predict function takes two inputs: a model object and the newdata on which
predictions will be made.

prediction <- predict( poverty_mod, new_states)

## 1 2 3
## 88.98794 86.48289 84.69357

® We can append this to our new_states data frame:
new_states <- cbind(new_states, prediction)

##  Poverty prediction

## 1 3 88.98794
## 2 10  86.48289
## 3 15 84.69357
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Predictions from Linear Models

® We can use the predict function to have R make predictions.

® The predict function takes two inputs: a model object and the newdata on which
predictions will be made.

prediction <- predict( poverty_mod, new_states)

## 1 2 3
## 88.98794 86.48289 84.69357

® We can append this to our new_states data frame:
new_states <- cbind(new_states, prediction)

##  Poverty prediction

## 1 3 88.98794
## 2 10  86.48289
## 3 15 84.69357

® Let's now practice in R
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