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K-Nearest Neighbors KNN Considerations

Outline

In today’s class, we will. . .
• Implement KNN in R
• Discuss benefits and drawbacks of KNN
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K-Nearest Neighbors KNN Considerations

Section 1

K-Nearest Neighbors
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K-Nearest Neighbors KNN Considerations

KNN Review

KNN makes predictions on a test point x0 by averaging the response value among K
“nearby” points in the training set.
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K-Nearest Neighbors KNN Considerations

Effect of K on predictions

Different values of K lead to different estimates ŷ .

• Small K mean that we only look at closest or “most similar” points, which should
have response values closest to the true response at the test point.

• However, with only a small number of neighbors, predictions are likely to change
significantly from training set to training set.

• Small K yields a low Bias, high Variance model (flexible model)

• Large K mean that we look points that are both close and distant; some of these
points have responses that might not be close to the true response at the test point.

• However, by averaging across a large number of points, predictions will not change
much between different training sets.

• Large K yields a low Variance, high Bias model (rigid model)

• In Ch. 5 (next week), we discuss methods for choosing optimal K
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K-Nearest Neighbors KNN Considerations

KNN in R

• In R, we have two options for KNN:
• Use knn from class package (textbook’s choice)
• Use the kknn function from the kknn package (preferable)

• Both kknn and knn fit a model and makes predictions all in one command.
• Compare to linear models, which first fit a model using lm and then make predictions

using predict

• The knn function requires a model matrix (use model.matrix); while kknn instead
uses a formula (y ~.)

• kknn allows us to (optionally) weight observations by distance
• kknn also allows us to use different notions of distance (Euclidean, Manhattan,

Minkowski, Hamming, and more)
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K-Nearest Neighbors KNN Considerations

Meet the Neighbors

The GrinnellHouses data set contains data on 929 houses sold between 2005 and 2015
in Grinnell, IA.

• Data was collected by local real estate broker Matt Karjalahti, and tidied by Grinnell
economists L. Logan and E. Ohrn

## Address Latitude Longitude Bedrooms Baths SquareFeet
## 1 1510 First Ave #112 41.73880 -92.71378 2 1 1120
## 2 1020 Center St 41.74558 -92.73168 3 1 1224
## 3 918 Chatterton St 41.74404 -92.71308 4 1 1540
## 4 1023 & 1025 Spring St. 41.74503 -92.72896 3 1 1154
## 5 503 2nd Ave 41.74041 -92.73002 3 1 1277
## 6 9090 Clay St 41.81942 -92.77381 3 1 1079
## LotSize YearBuilt YearSold MonthSold DaySold OrigPrice ListPrice SalePrice
## 1 NA 1993 2005 9 16 17000 10500 7000
## 2 0.1721763 1900 2006 3 20 35000 35000 27000
## 3 NA 1970 2006 3 15 54000 47000 28000
## 4 NA 1900 2006 2 1 65000 49000 30000
## 5 0.2066116 1900 2005 8 19 35000 35000 30750
## 6 0.1993572 1900 2005 5 27 45900 45900 42000
## Age
## 1 Modern
## 2 Old
## 3 Mid
## 4 Old
## 5 Old
## 6 Old
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K-Nearest Neighbors KNN Considerations

KNN in Action!

• When you apply for a home mortgage loan from a bank, you offer the
soon-to-by-purchased home as collateral.

• To ensure this asset can cover the loan amount in event that the loan is not repaid,
the bank contracts a 3rd party Assessor to value the home.

• The assessor records features of the home (Year Built, Year Sold, Location, Sq. Footage,
Bedrooms, Bathrooms, etc.) and then creates a list of comps: houses with comparable
features that have been recently sold.

• The assessor assigns a value to the home based on the (weighted) average of the sale
price of these comps.

• The assessor uses the fact that the “value” of the home is exactly what people are
willing to pay for similar homes in the same market.

• But this is exactly the KNN algorithm.
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K-Nearest Neighbors KNN Considerations

Location, Location, Location

Let’s predict house price, based on Latitude (N-S) and Longitude (E-W)
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K-Nearest Neighbors KNN Considerations

Location, Location, Location

Why is a multilinear model potentially a poor choice?
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K-Nearest Neighbors KNN Considerations

Location, Location, Location

How well would the linear model do if homes closest to the college have the highest price?
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K-Nearest Neighbors KNN Considerations

Building the KNN “model”

• We first divide our data set into training and test components:

set.seed(10) #Allows for reproducibile random numbers

n <- nrow(GrinnellHouses) #number of observations
prop <- 0.7 #proportion in the training set
train_size <- round(n*prop) #rounded number in training set

train_indices <- sample(1:n, size = train_size, replace = F)
#creates list of indices to include in training

head(train_indices) #an example of a few indices in training set

## [1] 491 649 330 368 460 439
GrinnellHouses_train <- GrinnellHouses[train_indices, ]
#subsets for training set by training indices

GrinnellHouses_test <- GrinnellHouses[-train_indices, ]
#subsets all observations not in training set
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K-Nearest Neighbors KNN Considerations

KNN predictions

• Now let’s predict on the test set for variety of values of k

library(kknn)

House_fit3 <- kknn(SalePrice ~ Longitude + Latitude,
train = GrinnellHouses_train,
test = GrinnellHouses_test,

k = 3, kernel = "rectangular")

House_fit5 <- kknn(SalePrice ~ Longitude + Latitude,
train = GrinnellHouses_train,
test = GrinnellHouses_test,

k = 5, kernel = "rectangular")

House_fit10 <- kknn(SalePrice ~ Longitude + Latitude,
train = GrinnellHouses_train,
test = GrinnellHouses_test,
k = 10, kernel = "rectangular")

• Setting kernel = "rectangular" corresponds to classic KNN (we’ll talk about
other options later)
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K-Nearest Neighbors KNN Considerations

Comparing Predictions

Here are some of the predicted and actual values for each of the models
• We access the predictions from the model using $fitted.values

actual_price knn1 knn3 knn5 knn10 knn30 lin_model

675 114900 77500 99833.33 106700 90600.0 177526.67 132099.2
378 70000 36000 66500.00 63200 71091.9 96097.30 132669.8
686 125000 65500 64666.67 99000 102000.0 91527.30 132674.3
15 58000 124500 131666.67 136900 121356.0 117745.33 132619.4
329 142000 68000 82000.00 85550 79185.0 91638.33 132666.5
23 72000 95000 120000.00 120400 120300.0 118950.00 132653.0
616 189500 285000 198333.33 214000 201200.0 185926.67 133016.0
496 115500 112000 120666.67 117500 135150.0 131875.00 132641.3
869 105000 111000 73000.00 85850 81041.9 97313.97 132666.4
243 268000 125900 143600.00 141660 167055.0 226237.23 132614.5

• Which model performed best?

metric knn1 knn3 knn5 knn10 knn30 lin_model
RMSE 62850.24 58005.88 57727.92 57129.2 61405.59 79479
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K-Nearest Neighbors KNN Considerations

Reflections

• Why do we think the K = 10 modeled outperformed the K = 3 model? Why did it
outperform the K = 30 model?

• K = 3 was too flexible (high variance, low bias), estimates were susceptible to individual
irregularity in prices

• i.e. house next door with flooded basement tanked the sale price
• K = 30 was too rigid (high bias, low variance), estimates relied too heavily on dissimilar

houses
• i.e. houses across town in entirely different neighborhood were used for comps

• What are some possible fixes to improve model accuracy?
• Include more variables: date sold, date built, bedrooms, bathrooms, square footage, etc.

• What is one problem with including more variables?
• There are fewer “similar” houses nearby
• Not clear how to assess “closeness” if predictors are all on different scales (i.e. Lat /

Long are in angular degrees, but Year Sold is in years)
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K-Nearest Neighbors KNN Considerations

Section 2

KNN Considerations
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K-Nearest Neighbors KNN Considerations

Quantifying Distance: Euclidean

When using Latitude and Longitude as predictors, it made sense to define “closeness” of
points based on our every-day notion of distance. This distance is called the Euclidean
Distance

• In 1 dimension (numbers on a line), the Euclidean Distance between two numbers a
and b is their absolute value d(a, b) = |a − b|

ab

d(a,b) = 3

2 4 6
x
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K-Nearest Neighbors KNN Considerations

Quantifying Distance: Euclidean

• In 2 dimensions (points on a plane), the Euclidean Distance between two points
a = (a1, a2) and b = (b1, b2) is given by the Pythagorean Theorem:

d(a, b) =
√

(a1 − b1)2 + (a2 − b2)2

a

b

d(a,b) = 5

4
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0

2
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K-Nearest Neighbors KNN Considerations

Quantifying Distance: Euclidean

• In p-dimensions, the Euclidean Distance between two points a = (a1, a2, . . . , ap) and
b = (b1, b2, . . . , bp) is given by the multidimensioanl Pythagorean Theorem:

d(a, b) =
√

(a1 − b1)2 + (a2 − b2)2 + · · · + (ap − bp)2 =

√√√√ p∑
i=1

(ai − bi )2

• For example, suppose a = (1, 0, 3) and b = (−1, 2, 2). Then d(a, b) =

d(a, b) =
√

(1 − (−1))2 + (0 − 2)2 + (3 − 2)2 =
√

22 + 22 + 12 = 3
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K-Nearest Neighbors KNN Considerations

Quantifying Distance: Manhattan

An alternative notion of distance is called the Manhattan Distance

• The name stems from how you might measure distance when driving around the city
of Manhattan, where you can only travel along city blocks (but not through buildings)
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K-Nearest Neighbors KNN Considerations

Quantifying Distance: Manhattan

• In 2 dimensions, the Manhattan Distance between two points a = (a1, a2) and
b = (b1, b2) is the sum of the absolute distances between their coordinates

dm(a, b) = |a1 − b1| + |a2 − b2|

a

b

dm(a, b) = 7
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K-Nearest Neighbors KNN Considerations

Quantifying Distance: Euclidean

• In p-dimensions, the Manhattan Distance between two points a = (a1, a2, . . . , ap) and
b = (b1, b2, . . . , bp) is given by sum of coordinate-wise absolute values:

dm(a, b) = |a1 − b1| + |a2 − b2| + · · · + |ap − bp | =
p∑

i=1

|ai − bi |

• For example, suppose a = (1, 0, 3) and b = (−1, 2, 2). Then dm(a, b) =

dm(a, b) = |1 − (−1)| + |0 − 2| + |3 − 2| = 2 + 2 + 1 = 5
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K-Nearest Neighbors KNN Considerations

Distances in KNN

When implementing KNN, we choose a distance metric to use to determine “closeness”

kknn(y~., distance = 2, ...) #Euclidean Distance

kknn(y~., distance = 1, ...) #Manhattan Distance

• We should use Euclidean distance if most (or all) predictors measure the same type of thing
(i.e. predictors are latitude and longitude)

• We might use Manhattan distance if predictors are incomparable (i.e. number of rooms, year
built, whether house has AC); or if predictors are binary.

• The choice of distance function can radically alter predictions.
• i.e. points that are close in Euclidean distance might not be close in Manhattan distance.
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K-Nearest Neighbors KNN Considerations

Standardization

Suppose we have two predictors X1 and X2, where the standard deviation of X1 is 10, while
the standard deviation of X2 is 1000.

• When using KNN, which of X1 or X2 will be more influential in prediction?
• X2 will be far more influential!

• The distance between points is the sum of the distances in each predictor
• The typical distance between the X2 values is in the 1000s, while the typical distance

between the X1 values is in the 10s.
• Points will be nearby if they have similar X2 values. The X1 value will be irrelevant

(since typical distances in X1 are so much smaller than typical distances in X2)

• To fix this problem, we standardize all predictors so they have mean 0 and standard
deviation 1:

X std
j =

Xj − X̄j

σXj

• In kknn, predictors are automatically standardized before predictions are made.
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K-Nearest Neighbors KNN Considerations

House Prices Redux

Let’s use K = 3, 5, 10, 30 to make predictions for sale price using year of sale, house age
(Old, Mid, Modern), and location.

• We use Manhattan distance, since predictors are incomparable
## Example Code
House_fit3_more <- kknn(SalePrice ~ Longitude + Latitude + Age + YearSold,

train = GrinnellHouses_train,
test = GrinnellHouses_test,

k = 3, kernel = "rectangular", distance = 1)

house_lm_more <- lm(SalePrice ~ Longitude + Latitude + Age + YearSold,
data = GrinnellHouses_train)

House_fit_lm_more <- predict(house_lm_more, newdata = GrinnellHouses_test)
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K-Nearest Neighbors KNN Considerations

Results

Some predictions:

actual_price knn1 knn3 knn5 knn10 knn30 lin_model

170 93000 94000 78666.67 79200 85440 103946.7 93144.97
567 294500 75000 73200.00 97520 127160 142296.7 189978.10
901 169500 148000 136666.67 171800 157250 134071.7 131516.80
388 85000 61000 53166.67 87700 89100 89900.0 96851.49

• Which model performed best?

metric knn1 knn3 knn5 knn10 knn30 lin_model

RMSE 79113.17 64101.93 64291.1 65431.08 65288.48 67496.36

• Compare to the models with only longitude and latitude

metric knn1 knn3 knn5 knn10 knn30 lin_model

RMSE 62850.24 58005.88 57727.92 57129.2 61405.59 79479
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K-Nearest Neighbors KNN Considerations

The Curse of Dimensionality

• So what happened? Why did every model (except linear) got worse with more
predictors?

• Some of the included variables may not have been useful in predicting Sale Price
• When we find distances between a test point and the training set, with a large number

of predictors, the test point will tend to be far away from most if not all of the
training set.

• I can find a house which is geographically close to mine, but. . .
• It might be hard to find a house which is simultaneously geographically close, and was

built in the same year, and was sold recently, and which has the same number of
bedrooms, and. . .

• The response values for the “neighbors” might not be representative of the response
value for the test point.

• This is known as the curse of dimensionality
• In general, non-parametric methods are more susceptible to this than parametric

methods
• Non-parametric methods tend to perform worse that parametric methods when there are

small number of observations per predictor in the model
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