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Outline

In today's class, we will. ..
® |ntroduce the KNN algorithm as an example of a non-parametric model
® Discuss benefits and drawbacks of KNN

® |mplement KNN in R
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Overview of Non-Parametric Methods

The overarching goal of supervised learning is to build a model to make predictions for a
response Y based on predictors Xi, ..., Xp.
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Overview of Non-Parametric Methods

The overarching goal of supervised learning is to build a model to make predictions for a
response Y based on predictors Xi, ..., Xp.
® Often, we assume that there is a true relationship between Y and Xi,..., X, given by

an (unknown) function f:
Y = f(Xi,..., Xp) +e
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Overview of Non-Parametric Methods

The overarching goal of supervised learning is to build a model to make predictions for a
response Y based on predictors Xi, ..., Xp.
® Often, we assume that there is a true relationship between Y and Xi,..., X, given by

an (unknown) function f:
Y = f(Xi,..., Xp) +e

® Parametric methods propose that f belongs to a specific class of functions which are
described by a small number of parameters; i.e.

f(x1,x2, ..., %p) = Bo + Brxa + -+ + Bpxp
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Overview of Non-Parametric Methods

The overarching goal of supervised learning is to build a model to make predictions for a
response Y based on predictors Xi, ..., Xp.

® Often, we assume that there is a true relationship between Y and Xi,..., X, given by
an (unknown) function f:
Y = f(X1,..., Xp) +e

® Parametric methods propose that f belongs to a specific class of functions which are
described by a small number of parameters; i.e.

f(x1,x2, ..., %p) = Bo + Brxa + -+ + Bpxp

® These methods then estimate the parameters using data:

?=Bo+31X1+---+Bpo
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Overview of Non-Parametric Methods

The overarching goal of supervised learning is to build a model to make predictions for a
response Y based on predictors Xi, ..., Xp.

® Often, we assume that there is a true relationship between Y and Xi,..., X, given by
an (unknown) function f:
Y = f(X1,..., Xp) +e

® Parametric methods propose that f belongs to a specific class of functions which are
described by a small number of parameters; i.e.

f(x1,x2, ..., %p) = Bo + Brxa + -+ + Bpxp
® These methods then estimate the parameters using data:
F=Bo+ B+ + Bpxp

® Non-Parametric methods instead make only limited assumptions about the form of f
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Overview of Non-Parametric Methods

The overarching goal of supervised learning is to build a model to make predictions for a
response Y based on predictors Xi, ..., Xp.

® Often, we assume that there is a true relationship between Y and Xi,..., X, given by
an (unknown) function f:
Y = f(X1,..., Xp) +e

® Parametric methods propose that f belongs to a specific class of functions which are
described by a small number of parameters; i.e.

f(x1,x2,...,xp) = Po+ Bix1 + -+ Bpxp
® These methods then estimate the parameters using data:
?=Bo+31X1+---+Bpo
® Non-Parametric methods instead make only limited assumptions about the form of f

® j.e. they may assume that f is continuous and bounded, but little else
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Overview of Non-Parametric Methods

The overarching goal of supervised learning is to build a model to make predictions for a
response Y based on predictors Xi, ..., Xp.

® Often, we assume that there is a true relationship between Y and Xi,..., X, given by
an (unknown) function f:
Y = f(X1,..., Xp) +e

® Parametric methods propose that f belongs to a specific class of functions which are
described by a small number of parameters; i.e.

f(x1,x2,...,xp) = Po+ Bix1 + -+ Bpxp
® These methods then estimate the parameters using data:
?=Bo+31X1+---+Bpo
® Non-Parametric methods instead make only limited assumptions about the form of f

® j.e. they may assume that f is continuous and bounded, but little else

® They instead estimate the outputs of f without being “too wiggly”
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Overview of Non-Parametric Methods

The overarching goal of supervised learning is to build a model to make predictions for a
response Y based on predictors Xi, ..., Xp.

® Often, we assume that there is a true relationship between Y and Xi,..., X, given by
an (unknown) function f:
Y = f(X1,..., Xp) +e

® Parametric methods propose that f belongs to a specific class of functions which are
described by a small number of parameters; i.e.

f(x1,%2,...,%p) = Bo+ Bix1 + - + Bpxp
® These methods then estimate the parameters using data:
?=Bo+31X1+---+Bpo
® Non-Parametric methods instead make only limited assumptions about the form of f
® j.e. they may assume that f is continuous and bounded, but little else
® They instead estimate the outputs of f without being “too wiggly”

® Often, they do not provide an estimate for the function f, only its outputs
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K-Nearest Neighbors

® K-Nearest Neighbors (KNN) is an example of a non-parametric supervised learning
method
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K-Nearest Neighbors

® K-Nearest Neighbors (KNN) is an example of a non-parametric supervised learning
method

® |t is notable for its intuitiveness, flexibility, and simplicity, as well as its quick model
building time
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K-Nearest Neighbors

® K-Nearest Neighbors (KNN) is an example of a non-parametric supervised learning
method

® |t is notable for its intuitiveness, flexibility, and simplicity, as well as its quick model
building time

® However, it lacks the structure of linear regression, meaning it provides little information
about relationships between variables (i.e. it is a predictive, but not explanatory model)
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K-Nearest Neighbors

® K-Nearest Neighbors (KNN) is an example of a non-parametric supervised learning
method

® |t is notable for its intuitiveness, flexibility, and simplicity, as well as its quick model
building time

® However, it lacks the structure of linear regression, meaning it provides little information
about relationships between variables (i.e. it is a predictive, but not explanatory model)

® KNN can be used for both regression and classification tasks, as well as some
unsupervised tasks

Prof Wells (STA 295: Stat Learning) K-Nearest Neighbors February 20th, 2024



K-Nearest Neighbors
0000000000000 000000000000000000000

K-Nearest Neighbors

® K-Nearest Neighbors (KNN) is an example of a non-parametric supervised learning
method

® |t is notable for its intuitiveness, flexibility, and simplicity, as well as its quick model
building time

® However, it lacks the structure of linear regression, meaning it provides little information
about relationships between variables (i.e. it is a predictive, but not explanatory model)

® KNN can be used for both regression and classification tasks, as well as some
unsupervised tasks

® The algorithm works by assuming the response value of a variable tends to be similar
among observations that are similar.

® What we mean by “similar” will be made formal later, but is a source of problem for the
KNN method
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KNN Algorithm

@ Divide data into training and test sets
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KNN Algorithm

@ Divide data into training and test sets

® Choose a positive integer K, representing the number of neighbors to be considered.
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KNN Algorithm

@ Divide data into training and test sets
® Choose a positive integer K, representing the number of neighbors to be considered.

® To make a prediction at a test observation xp, identify the K points in the training set
whose predictor values are “closest” to the predictor values of xg. Call this set of
neighbors N
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KNN Algorithm

@ Divide data into training and test sets
® Choose a positive integer K, representing the number of neighbors to be considered.

® To make a prediction at a test observation xp, identify the K points in the training set
whose predictor values are “closest” to the predictor values of xg. Call this set of
neighbors N

@ Predict the response jp for xp to be the average value of the responses among hte

neighbor set:
N 1
Yo = R Z Yi
i€ENp
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KNN Algorithm

@ Divide data into training and test sets
® Choose a positive integer K, representing the number of neighbors to be considered.

® To make a prediction at a test observation xp, identify the K points in the training set
whose predictor values are “closest” to the predictor values of xg. Call this set of
neighbors N

@ Predict the response jp for xp to be the average value of the responses among hte
neighbor set:
N 1
Yo = R Z Yi
i€ENp
@ Repeat steps 3 and 4 for all points in the test set.
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KNN in Pictures

® Suppose we want to predict the value of a quantitative response based on two
quantitative predictors X; and X>.
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KNN in Pictures

® Suppose we want to predict the value of a quantitative response based on two
quantitative predictors X; and X>.

® We have a training set of 30 observations, and can plot each observation in 2D
predictor space, where the horizontal axis is X1 and the vertical axis is Xz.
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KNN in Pictures

® Suppose we want to predict the value of a quantitative response based on two
quantitative predictors X; and X>.

® We have a training set of 30 observations, and can plot each observation in 2D
predictor space, where the horizontal axis is X1 and the vertical axis is Xz.

® We color points according to the value of the response variable Y
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KNN in Pictures

® Suppose we want to predict the value of a quantitative response based on two
quantitative predictors X; and X>.

® We have a training set of 30 observations, and can plot each observation in 2D
predictor space, where the horizontal axis is X1 and the vertical axis is Xz.

® We color points according to the value of the response variable Y

® We have a new point (*) for which we know the values of its predictors, and wish to
estimate the value of its response.
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KNN in Pictures
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KNN in Pictures
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KNN in Pictures
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KNN in Pictures
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KNN in Pictures
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KNN in Pictures
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KNN in Pictures
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KNN in Pictures
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KNN in Pictures
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KNN in Pictures
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KNN in Pictures
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K=1

Here are the KNN surfaces for a variety of values of K.

K=1

Prof Wells (STA 295: Stat Learning)



K-Nearest Neighbors
0000000000000 0000e0000000000000000

K=2

Here are the KNN surfaces for a variety of values of K.

K=2
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K=5

Here are the KNN surfaces for a variety of values of K.

K=5
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K=10

Here are the KNN surfaces for a variety of values of K.

K=10
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K=20

Here are the KNN surfaces for a variety of values of K.

K=20
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K=30

Here are the KNN surfaces for a variety of values of K.

K=30
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True Surface

Here is the true surface describing Y = (X1, X2):

True Surface
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Linear Model

Here is the true surface described by the linear model Yy = BO + Ble + Bng:
Linear Model Surface
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New Training Set, K=1

Here are the KNN surfaces for a variety of values of K.
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Old Training Set, K =1

Here are the KNN surfaces for a variety of values of K.

K=1
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New Training Set, K=2

Here are the KNN surfaces for a variety of values of K.

K=2
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Old Training Set, K = 2

Here are the KNN surfaces for a variety of values of K.

K=2

Prof Wells (STA 295: Stat Learning)



K-Nearest Neighbors
0000000000000 000000000000000e00000

New Training Set, K=10

Here are the KNN surfaces for a variety of values of K.

K=10
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Old Training Set, K=10

Here are the KNN surfaces for a variety of values of K.

K=10
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New Training Set, K=30

Here are the KNN surfaces for a variety of values of K.

K=30
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Old Training Set, K=

Here are the KNN surfaces for a variety of values of K.

K=30

4.04
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New Training Set Linear Model

Here is the true surface described by the linear model Yy = BO + Ble + Bng:

Linear Model Surface
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Reflections

Different values of K lead to different estimates y.

Prof Wells (STA 295: Stat Learnii




K-Nearest Neighbors
0000000000000 00000000000000000000e

Reflections

Different values of K lead to different estimates y.

® Small K mean that we only look at closest or “most similar” points, which should
have response values closest to the true response at the test point.
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Reflections

Different values of K lead to different estimates y.

® Small K mean that we only look at closest or “most similar” points, which should
have response values closest to the true response at the test point.

® However, with only a small number of neighbors, predictions are likely to change
significantly from training set to training set.
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Reflections

Different values of K lead to different estimates y.
® Small K mean that we only look at closest or “most similar” points, which should
have response values closest to the true response at the test point.

® However, with only a small number of neighbors, predictions are likely to change
significantly from training set to training set.

® Low K yields a high Variance, low Bias model
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Reflections

Different values of K lead to different estimates y.
® Small K mean that we only look at closest or “most similar” points, which should
have response values closest to the true response at the test point.

® However, with only a small number of neighbors, predictions are likely to change
significantly from training set to training set.

® Low K yields a high Variance, low Bias model

® Small K mean that we look points that are both close and distant; some of these
points have responses that might not be close to the true response at the test point.
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Reflections

Different values of K lead to different estimates y.
® Small K mean that we only look at closest or “most similar” points, which should
have response values closest to the true response at the test point.

® However, with only a small number of neighbors, predictions are likely to change
significantly from training set to training set.

® Low K yields a high Variance, low Bias model
® Small K mean that we look points that are both close and distant; some of these
points have responses that might not be close to the true response at the test point.

® However, by averaging across a large number of points, predictions will not change
much between different training sets.
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Reflections

Different values of K lead to different estimates y.
® Small K mean that we only look at closest or “most similar” points, which should
have response values closest to the true response at the test point.

® However, with only a small number of neighbors, predictions are likely to change
significantly from training set to training set.

® Low K yields a high Variance, low Bias model
® Small K mean that we look points that are both close and distant; some of these
points have responses that might not be close to the true response at the test point.

® However, by averaging across a large number of points, predictions will not change
much between different training sets.

® High K yields a high Bias, low Variance model
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Reflections

Different values of K lead to different estimates y.

® Small K mean that we only look at closest or “most similar” points, which should
have response values closest to the true response at the test point.

® However, with only a small number of neighbors, predictions are likely to change
significantly from training set to training set.

® Low K yields a high Variance, low Bias model

® Small K mean that we look points that are both close and distant; some of these
points have responses that might not be close to the true response at the test point.

® However, by averaging across a large number of points, predictions will not change
much between different training sets.

® High K yields a high Bias, low Variance model

® |n Ch. 5, we discuss methods for choosing optimal K
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