Prof Wells

STA 295: Stat Learning

February 20th, 2024

Outline

In today's class, we will...

- Introduce the KNN algorithm as an example of a non-parametric model
- · Discuss benefits and drawbacks of KNN
- Implement KNN in R

Section 1

The overarching goal of supervised learning is to build a model to make predictions for a response Y based on predictors X_1, \ldots, X_p .

The overarching goal of supervised learning is to build a model to make predictions for a response Y based on predictors X_1, \ldots, X_p .

• Often, we assume that there is a true relationship between Y and X_1, \ldots, X_p given by an (unknown) function f:

$$Y = f(X_1, \ldots, X_p) + \epsilon$$

The overarching goal of supervised learning is to build a model to make predictions for a response Y based on predictors X_1, \ldots, X_p .

• Often, we assume that there is a true relationship between Y and X_1, \ldots, X_p given by an (unknown) function f:

$$Y = f(X_1, \ldots, X_p) + \epsilon$$

 Parametric methods propose that f belongs to a specific class of functions which are described by a small number of parameters; i.e.

$$f(x_1,x_2,\ldots,x_p)=\beta_0+\beta_1x_1+\cdots+\beta_px_p$$

The overarching goal of supervised learning is to build a model to make predictions for a response Y based on predictors X_1, \ldots, X_p .

• Often, we assume that there is a true relationship between Y and X_1, \ldots, X_p given by an (unknown) function f:

$$Y = f(X_1, \ldots, X_p) + \epsilon$$

 Parametric methods propose that f belongs to a specific class of functions which are described by a small number of parameters; i.e.

$$f(x_1,x_2,\ldots,x_p)=\beta_0+\beta_1x_1+\cdots+\beta_px_p$$

These methods then estimate the parameters using data:

$$\hat{f} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p$$

The overarching goal of supervised learning is to build a model to make predictions for a response Y based on predictors X_1, \ldots, X_p .

• Often, we assume that there is a true relationship between Y and X_1, \ldots, X_p given by an (unknown) function f:

$$Y = f(X_1, \ldots, X_p) + \epsilon$$

 Parametric methods propose that f belongs to a specific class of functions which are described by a small number of parameters; i.e.

$$f(x_1, x_2, ..., x_p) = \beta_0 + \beta_1 x_1 + \cdots + \beta_p x_p$$

• These methods then estimate the parameters using data:

$$\hat{f} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p$$

Non-Parametric methods instead make only limited assumptions about the form of f

The overarching goal of supervised learning is to build a model to make predictions for a response Y based on predictors X_1, \ldots, X_p .

• Often, we assume that there is a true relationship between Y and X_1, \ldots, X_p given by an (unknown) function f:

$$Y = f(X_1, \ldots, X_p) + \epsilon$$

 Parametric methods propose that f belongs to a specific class of functions which are described by a small number of parameters; i.e.

$$f(x_1, x_2, ..., x_p) = \beta_0 + \beta_1 x_1 + \cdots + \beta_p x_p$$

• These methods then estimate the parameters using data:

$$\hat{f} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p$$

- ullet Non-Parametric methods instead make only limited assumptions about the form of f
 - \bullet i.e. they may assume that f is continuous and bounded, but little else

The overarching goal of supervised learning is to build a model to make predictions for a response Y based on predictors X_1, \ldots, X_p .

• Often, we assume that there is a true relationship between Y and X_1, \ldots, X_p given by an (unknown) function f:

$$Y = f(X_1, \ldots, X_p) + \epsilon$$

 Parametric methods propose that f belongs to a specific class of functions which are described by a small number of parameters; i.e.

$$f(x_1, x_2, ..., x_p) = \beta_0 + \beta_1 x_1 + \cdots + \beta_p x_p$$

These methods then estimate the parameters using data:

$$\hat{f} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p$$

- Non-Parametric methods instead make only limited assumptions about the form of f
 - i.e. they may assume that f is continuous and bounded, but little else
 - They instead estimate the outputs of f without being "too wiggly"

The overarching goal of supervised learning is to build a model to make predictions for a response Y based on predictors X_1, \ldots, X_p .

• Often, we assume that there is a true relationship between Y and X_1, \ldots, X_p given by an (unknown) function f:

$$Y = f(X_1, \ldots, X_p) + \epsilon$$

 Parametric methods propose that f belongs to a specific class of functions which are described by a small number of parameters; i.e.

$$f(x_1, x_2, ..., x_p) = \beta_0 + \beta_1 x_1 + \cdots + \beta_p x_p$$

• These methods then estimate the parameters using data:

$$\hat{f} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p$$

- Non-Parametric methods instead make only limited assumptions about the form of f
 - i.e. they may assume that f is continuous and bounded, but little else
 - They instead estimate the outputs of f without being "too wiggly"
 - Often, they do not provide an estimate for the function f, only its outputs

 K-Nearest Neighbors (KNN) is an example of a non-parametric supervised learning method

- K-Nearest Neighbors (KNN) is an example of a non-parametric supervised learning method
 - It is notable for its intuitiveness, flexibility, and simplicity, as well as its quick model building time

- K-Nearest Neighbors (KNN) is an example of a non-parametric supervised learning method
 - It is notable for its intuitiveness, flexibility, and simplicity, as well as its quick model building time
 - However, it lacks the structure of linear regression, meaning it provides little information about relationships between variables (i.e. it is a predictive, but not explanatory model)

- K-Nearest Neighbors (KNN) is an example of a non-parametric supervised learning method
 - It is notable for its intuitiveness, flexibility, and simplicity, as well as its quick model building time
 - However, it lacks the structure of linear regression, meaning it provides little information about relationships between variables (i.e. it is a predictive, but not explanatory model)
 - KNN can be used for both regression and classification tasks, as well as some unsupervised tasks

- K-Nearest Neighbors (KNN) is an example of a non-parametric supervised learning method
 - It is notable for its intuitiveness, flexibility, and simplicity, as well as its quick model building time
 - However, it lacks the structure of linear regression, meaning it provides little information about relationships between variables (i.e. it is a predictive, but not explanatory model)
 - KNN can be used for both regression and classification tasks, as well as some unsupervised tasks
- The algorithm works by assuming the response value of a variable tends to be similar among observations that are similar.
 - What we mean by "similar" will be made formal later, but is a source of problem for the KNN method

1 Divide data into training and test sets

- Divide data into training and test sets
- $oldsymbol{0}$ Choose a positive integer K, representing the number of neighbors to be considered.

- Divide data into training and test sets
- **Q** Choose a positive integer K, representing the number of neighbors to be considered.
- **②** To make a prediction at a *test* observation x_0 , identify the K points in the *training* set whose predictor values are "closest" to the predictor values of x_0 . Call this set of neighbors \mathcal{N}_0

- 1 Divide data into training and test sets
- $oldsymbol{0}$ Choose a positive integer K, representing the number of neighbors to be considered.
- **6** To make a prediction at a *test* observation x_0 , identify the K points in the *training* set whose predictor values are "closest" to the predictor values of x_0 . Call this set of neighbors \mathcal{N}_0
- **6** Predict the response \hat{y}_0 for x_0 to be the average value of the responses among hte neighbor set:

$$\hat{y}_0 = \frac{1}{K} \sum_{i \in \mathcal{N}_0} y_i$$

- 1 Divide data into training and test sets
- $oldsymbol{0}$ Choose a positive integer K, representing the number of neighbors to be considered.
- **6** To make a prediction at a *test* observation x_0 , identify the K points in the *training* set whose predictor values are "closest" to the predictor values of x_0 . Call this set of neighbors \mathcal{N}_0
- **6** Predict the response \hat{y}_0 for x_0 to be the average value of the responses among hte neighbor set:

$$\hat{y}_0 = rac{1}{\mathcal{K}} \sum_{i \in \mathcal{N}_0} y_i$$

6 Repeat steps 3 and 4 for all points in the test set.

• Suppose we want to predict the value of a quantitative response based on two quantitative predictors X_1 and X_2 .

- Suppose we want to predict the value of a quantitative response based on two quantitative predictors X_1 and X_2 .
- We have a training set of 30 observations, and can plot each observation in 2D **predictor space**, where the horizontal axis is X_1 and the vertical axis is X_2 .

- Suppose we want to predict the value of a quantitative response based on two quantitative predictors X₁ and X₂.
- We have a training set of 30 observations, and can plot each observation in 2D **predictor space**, where the horizontal axis is X_1 and the vertical axis is X_2 .
- We color points according to the value of the response variable Y

- Suppose we want to predict the value of a quantitative response based on two quantitative predictors X₁ and X₂.
- We have a training set of 30 observations, and can plot each observation in 2D **predictor space**, where the horizontal axis is X_1 and the vertical axis is X_2 .
- We color points according to the value of the response variable Y
- We have a new point (*) for which we know the values of its predictors, and wish to estimate the value of its response.

True Surface

Here is the true surface describing $Y = f(X_1, X_2)$:

Linear Mo<u>del</u>

Here is the true surface described by the linear model $\hat{Y}=\hat{\beta}_0+\hat{\beta}_1X_1+\hat{\beta}_2X_2$:

Linear Model Surface

New Training Set, K=1

Old Training Set, $\mathsf{K}=1$

New Training Set, K=2

Old Training Set, K=2

New Training Set, K=10

Old Training Set, K=10

New Training Set, K=30

Old Training Set, K=30

New Training Set Linear Model

Here is the true surface described by the linear model $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2$:

Linear Model Surface

Different values of K lead to different estimates \hat{y} .

• Small K mean that we only look at closest or "most similar" points, which should have response values closest to the true response at the test point.

- Small K mean that we only look at closest or "most similar" points, which should have response values closest to the true response at the test point.
 - However, with only a small number of neighbors, predictions are likely to change significantly from training set to training set.

- Small K mean that we only look at closest or "most similar" points, which should have response values closest to the true response at the test point.
 - However, with only a small number of neighbors, predictions are likely to change significantly from training set to training set.
 - Low K yields a high Variance, low Bias model

- Small K mean that we only look at closest or "most similar" points, which should have response values closest to the true response at the test point.
 - However, with only a small number of neighbors, predictions are likely to change significantly from training set to training set.
 - Low K yields a high Variance, low Bias model
- Small K mean that we look points that are both close and distant; some of these
 points have responses that might not be close to the true response at the test point.

- Small K mean that we only look at closest or "most similar" points, which should have response values closest to the true response at the test point.
 - However, with only a small number of neighbors, predictions are likely to change significantly from training set to training set.
 - Low K yields a high Variance, low Bias model
- Small K mean that we look points that are both close and distant; some of these
 points have responses that might not be close to the true response at the test point.
 - However, by averaging across a large number of points, predictions will not change much between different training sets.

- Small K mean that we only look at closest or "most similar" points, which should have response values closest to the true response at the test point.
 - However, with only a small number of neighbors, predictions are likely to change significantly from training set to training set.
 - Low K yields a high Variance, low Bias model
- Small K mean that we look points that are both close and distant; some of these
 points have responses that might not be close to the true response at the test point.
 - However, by averaging across a large number of points, predictions will not change much between different training sets.
 - High K yields a high Bias, low Variance model

- Small K mean that we only look at closest or "most similar" points, which should have response values closest to the true response at the test point.
 - However, with only a small number of neighbors, predictions are likely to change significantly from training set to training set.
 - Low K yields a high Variance, low Bias model
- Small K mean that we look points that are both close and distant; some of these
 points have responses that might not be close to the true response at the test point.
 - However, by averaging across a large number of points, predictions will not change much between different training sets.
 - High K yields a high Bias, low Variance model
- In Ch. 5, we discuss methods for choosing optimal K