Foundations of Statistical Learning

Prof Wells

STA 295: Stat Learning

January 30th, 2024

Outline

In today's class, we will...

Outline

In today's class, we will...

- Discuss the goals of statistical learning algorithms
- Survey some of the most common methods for statistical learning
- Practice coding in R

Section 1

Foundations of Stat Learning

• Stat learning is collection of tools to understand data

- Stat learning is collection of tools to understand data
- Tools are often divided into *supervised* and *unsupervised* methods.

- Stat learning is collection of tools to understand data
- Tools are often divided into supervised and unsupervised methods.
 - Supervised: involve building models to predict the value of one or more output variables
 - Unsupervised: seek to learn about relationships and structure within data
- Supervising learning is divided into two tasks, depending on output variable's type:

- Stat learning is collection of tools to understand data
- Tools are often divided into supervised and unsupervised methods.
 - Supervised: involve building models to predict the value of one or more output variables
 - Unsupervised: seek to learn about relationships and structure within data
- Supervising learning is divided into two tasks, depending on output variable's type:
 - Regression: Predicting (estimating) numeric value of quantitative variables
 - Classification: Predicting (classifying) qualitative level of categorical variables

• Supervised methods study of the relationships between **predictor variables** X_1, \ldots, X_p for a population, and one or more **response variables** Y_1, Y_2, \ldots

- Supervised methods study of the relationships between **predictor variables** X_1, \ldots, X_p for a population, and one or more **response variables** Y_1, Y_2, \ldots
 - Ex: For a newly published book, given its genre (X_1) , page count (X_2) , whether author has previously published (X_3) , and author visibility (X_4) , predict how many copies (Y_1) of the book will be sold 1 year after publication, as well as number of consecutive weeks (Y_2) book will sell at least 100 units.

- Supervised methods study of the relationships between **predictor variables** X_1, \ldots, X_p for a population, and one or more **response variables** Y_1, Y_2, \ldots
 - Ex: For a newly published book, given its genre (X₁), page count (X₂), whether author has previously published (X₃), and author visibility (X₄), predict how many copies (Y₁) of the book will be sold 1 year after publication, as well as number of consecutive weeks (Y₂) book will sell at least 100 units.
- In the simplest regression tasks, we observe the values of one quantitative response Y, as well as p many predictors X_1, \ldots, X_p (these may be quantitative or categorical)

- Supervised methods study of the relationships between **predictor variables** X_1, \ldots, X_p for a population, and one or more **response variables** Y_1, Y_2, \ldots
 - Ex: For a newly published book, given its genre (X_1) , page count (X_2) , whether author has previously published (X_3) , and author visibility (X_4) , predict how many copies (Y_1) of the book will be sold 1 year after publication, as well as number of consecutive weeks (Y_2) book will sell at least 100 units.
- In the simplest regression tasks, we observe the values of *one quantitative* response Y, as well as p many predictors X_1, \ldots, X_p (these may be quantitative or categorical)
- We assume there is a certain relationship between response and predictors:

$$Y = f(X_1, \ldots, X_p) + \epsilon$$

- Supervised methods study of the relationships between **predictor variables** X_1, \ldots, X_p for a population, and one or more **response variables** Y_1, Y_2, \ldots
 - Ex: For a newly published book, given its genre (X₁), page count (X₂), whether author
 has previously published (X₃), and author visibility (X₄), predict how many copies (Y₁)
 of the book will be sold 1 year after publication, as well as number of consecutive weeks
 (Y₂) book will sell at least 100 units.
- In the simplest regression tasks, we observe the values of one quantitative response Y, as well as p many predictors X_1, \ldots, X_p (these may be quantitative or categorical)
- We assume there is a certain relationship between response and predictors:

$$Y = f(X_1, \ldots, X_p) + \epsilon$$

 The function f is called the model or regression function and the random variable ε is the error term

- Supervised methods study of the relationships between **predictor variables** X_1, \ldots, X_p for a population, and one or more **response variables** Y_1, Y_2, \ldots
 - Ex: For a newly published book, given its genre (X_1) , page count (X_2) , whether author has previously published (X_3) , and author visibility (X_4) , predict how many copies (Y_1) of the book will be sold 1 year after publication, as well as number of consecutive weeks (Y_2) book will sell at least 100 units.
- In the simplest regression tasks, we observe the values of one quantitative response Y, as well as p many predictors X_1, \ldots, X_p (these may be quantitative or categorical)
- We assume there is a certain relationship between response and predictors:

$$Y = f(X_1, \ldots, X_p) + \epsilon$$

- The function f is called the model or regression function and the random variable ε is the error term
- The function f represents our best estimate of the value of Y given X, or the expected
 value of Y given X

• In practice, we will never know the true formula for f.

- In practice, we will never know the **true** formula for *f* .
 - Goal of stat learning is to estimate f, given sample data for X_1, \ldots, X_p and Y.

- In practice, we will never know the true formula for f.
 - Goal of stat learning is to estimate f, given sample data for X_1, \ldots, X_p and Y.
 - Our estimate for the the true model f is called the **fitted** model \hat{f} .

- In practice, we will never know the **true** formula for f.
 - Goal of stat learning is to estimate f, given sample data for X_1, \ldots, X_p and Y.
 - Our estimate for the true model f is called the **fitted** model \hat{f} .
- How we estimate f will depend on our research goals.

- In practice, we will never know the **true** formula for *f* .
 - Goal of stat learning is to estimate f, given sample data for X_1, \ldots, X_p and Y.
 - Our estimate for the true model \hat{f} is called the **fitted** model \hat{f} .
- How we estimate f will depend on our research goals.
- **1** Make **predictions** about the values of Y using X_1, \ldots, X_p

- In practice, we will never know the true formula for f.
 - Goal of stat learning is to estimate f, given sample data for X_1, \ldots, X_p and Y.
 - Our estimate for the true model f is called the **fitted** model \hat{f} .
- How we estimate f will depend on our research goals.
- **1** Make **predictions** about the values of Y using X_1, \ldots, X_p
 - ullet Very interested in finding \hat{f} that makes accurate predictions for Y
 - Less interested in the learning the true form of f
 - STA 295: Statistical Learning

- In practice, we will never know the true formula for f.
 - Goal of stat learning is to estimate f, given sample data for X_1, \ldots, X_p and Y.
 - Our estimate for the true model \hat{f} is called the **fitted** model \hat{f} .
- How we estimate f will depend on our research goals.
- **1** Make **predictions** about the values of Y using X_1, \ldots, X_p
 - ullet Very interested in finding \hat{f} that makes accurate predictions for Y
 - Less interested in the learning the true form of f
 - STA 295: Statistical Learning
- **2** Make **inferences** about relationship between Y and X_1, \ldots, X_p

- In practice, we will never know the true formula for f.
 - Goal of stat learning is to estimate f, given sample data for X_1, \ldots, X_p and Y.
 - Our estimate for the the true model \hat{f} is called the **fitted** model \hat{f} .
- How we estimate f will depend on our research goals.
- **1** Make **predictions** about the values of Y using X_1, \ldots, X_p
 - Very interested in finding \hat{f} that makes accurate predictions for Y
 - Less interested in the learning the true form of f
 - STA 295: Statistical Learning
- **2** Make **inferences** about relationship between Y and X_1, \ldots, X_p
 - Very interested in learning the true form of f
 - Less interested in finding \hat{f} that makes accurate predictions for Y
 - STA 310: Statistical Modeling

Consider two quantitative variables X and Y

• Suppose, in truth, $Y = 1 + 2X + \epsilon$, where $\epsilon \sim N(\mu = 0, \sigma = 0.25)$.

- Suppose, in truth, $Y=1+2X+\epsilon$, where $\epsilon \sim N(\mu=0,\sigma=0.25)$.
- The true model is f(x) = 1 + 2x.

- Suppose, in truth, $Y=1+2X+\epsilon$, where $\epsilon \sim N(\mu=0,\sigma=0.25)$.
- But data Y will not always lie on this line:

- In reality, we won't know the true model.
- We only have the observed data

- ullet Instead, we create an estimate \hat{f} based on data
- Here, we use least squares regression to estimate f

- Our estimated model is $\hat{f}(x) = 1.14 + 1.77x$
- Which is close to the true model of f(x) = 1 + 2x

Prediction is useful in settings where X can be observed, but Y cannot. Ex:

• Suppose, after 8 weeks of the semester, I have collected the following grading information from each student: a midterm exam score X_1 , a homework average for the first 8 weeks X_2 , and a note indicating whether the student has ever been absent X_3 .

- Suppose, after 8 weeks of the semester, I have collected the following grading information from each student: a midterm exam score X_1 , a homework average for the first 8 weeks X_2 , and a note indicating whether the student has ever been absent X_3 .
- Ultimately, I want to estimate the final grade Y for each student.

- Suppose, after 8 weeks of the semester, I have collected the following grading information from each student: a midterm exam score X_1 , a homework average for the first 8 weeks X_2 , and a note indicating whether the student has ever been absent X_3 .
- Ultimately, I want to estimate the final grade Y for each student.
 - Why is it useful to predict Y?

- Suppose, after 8 weeks of the semester, I have collected the following grading information from each student: a midterm exam score X_1 , a homework average for the first 8 weeks X_2 , and a note indicating whether the student has ever been absent X_3 .
- Ultimately, I want to estimate the final grade Y for each student.
 - Why is it useful to predict *Y*?
- To do so, we theorize a model f that takes in X_1, X_2, X_3 as input and outputs our best guess \hat{Y} for Y.

- Suppose, after 8 weeks of the semester, I have collected the following grading information from each student: a midterm exam score X_1 , a homework average for the first 8 weeks X_2 , and a note indicating whether the student has ever been absent X_3 .
- Ultimately, I want to estimate the final grade Y for each student.
 - Why is it useful to predict Y?
- To do so, we theorize a model f that takes in X_1, X_2, X_3 as input and outputs our best guess \hat{Y} for Y.
 - What is one such possible model f?

- Suppose, after 8 weeks of the semester, I have collected the following grading information from each student: a midterm exam score X_1 , a homework average for the first 8 weeks X_2 , and a note indicating whether the student has ever been absent X_3 .
- Ultimately, I want to estimate the final grade Y for each student.
 - Why is it useful to predict Y?
- To do so, we theorize a model f that takes in X_1, X_2, X_3 as input and outputs our best guess \hat{Y} for Y.
 - What is one such possible model f?
- But even if we have a perfect estimate for f in $Y = f(X) + \epsilon$, the predicted value $\hat{Y} = f(X)$ of Y may not equal Y, since Y also depends on ϵ .

Estimating f for Prediction

Prediction is useful in settings where X can be observed, but Y cannot. Ex:

- Suppose, after 8 weeks of the semester, I have collected the following grading information from each student: a midterm exam score X_1 , a homework average for the first 8 weeks X_2 , and a note indicating whether the student has ever been absent X_3 .
- Ultimately, I want to estimate the final grade Y for each student.
 - Why is it useful to predict Y?
- To do so, we theorize a model f that takes in X_1, X_2, X_3 as input and outputs our best guess \hat{Y} for Y.
 - What is one such possible model f?
- But even if we have a perfect estimate for f in $Y = f(X) + \epsilon$, the predicted value $\hat{Y} = f(X)$ of Y may not equal Y, since Y also depends on ϵ .
 - What are some sources of error ϵ in the previous model?

In general, there are two sources of error in a model $\hat{Y} = \hat{f}(X_1, \dots, X_p) + \epsilon$ for the relationship

$$Y = f(X_1, \ldots, X_p) + \epsilon$$

In general, there are two sources of error in a model $\hat{Y} = \hat{f}(X_1, \dots, X_p) + \epsilon$ for the relationship

$$Y = f(X_1, \ldots, X_p) + \epsilon$$

1 Reducible error, in the form of our estimate \hat{f} for f.

In general, there are two sources of error in a model $\hat{Y}=\hat{f}(X_1,\ldots,X_p)+\epsilon$ for the relationship

$$Y = f(X_1, \ldots, X_p) + \epsilon$$

- Reducible error, in the form of our estimate \hat{f} for f.
- 2 Irreducible error, in the form of ϵ

In general, there are two sources of error in a model $\hat{Y}=\hat{f}(X_1,\ldots,X_p)+\epsilon$ for the relationship

$$Y = f(X_1, \ldots, X_p) + \epsilon$$

- Reducible error, in the form of our estimate \hat{f} for f.
- **2** Irreducible error, in the form of ϵ

What steps can be taken to improve reducible error?

In general, there are two sources of error in a model $\hat{Y} = \hat{f}(X_1, \dots, X_p) + \epsilon$ for the relationship

$$Y = f(X_1, \ldots, X_p) + \epsilon$$

- Reducible error, in the form of our estimate \hat{f} for f.
- 2 Irreducible error, in the form of ϵ

What steps can be taken to improve reducible error?

What about irreducible error?

In many settings, we are interested in the relationship between each predictor X_1, \ldots, X_p and the response Y.

In many settings, we are interested in the relationship between each predictor X_1, \ldots, X_p and the response Y.

• Which predictors are likely to be associated with response?

In many settings, we are interested in the relationship between each predictor X_1, \ldots, X_p and the response Y.

- Which predictors are likely to be associated with response?
- What is the degree and strength of the relationship between significant predictors and the response?

In many settings, we are interested in the relationship between each predictor X_1, \ldots, X_p and the response Y.

- Which predictors are likely to be associated with response?
- What is the degree and strength of the relationship between significant predictors and the response?
- What type of relationship exists between the predictors and the response? (Linear? Exponential? Something more complicated?)

In many settings, we are interested in the relationship between each predictor X_1, \ldots, X_p and the response Y.

- Which predictors are likely to be associated with response?
- What is the degree and strength of the relationship between significant predictors and the response?
- What type of relationship exists between the predictors and the response? (Linear? Exponential? Something more complicated?)

Ex:

A data set contains information on a professor's age, gender, tenure-status, ethnicity, and department. Which of these predictors are associated with course evaluation scores, and how?

In many settings, we are interested in the relationship between each predictor X_1, \ldots, X_p and the response Y.

- Which predictors are likely to be associated with response?
- What is the degree and strength of the relationship between significant predictors and the response?
- What type of relationship exists between the predictors and the response? (Linear? Exponential? Something more complicated?)

Ex:

A data set contains information on a professor's age, gender, tenure-status, ethnicity, and department. Which of these predictors are associated with course evaluation scores, and how?

Here, we are trying to **infer** information about the factors which contribute to course eval score.

Parametric methods for estimating f involve two steps:

 $oldsymbol{0}$ Based on domain knowledge, make assumptions about functional form or shape of f.

Parametric methods for estimating f involve two steps:

- $oldsymbol{0}$ Based on domain knowledge, make assumptions about functional form or shape of f.
- The linear model is a common choice for the shape of f:

$$f(X_1) = \beta_0 + \beta_1 X_1$$
 simple linear $f(X_1, \dots, X_p) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$ multilinear

Parametric methods for estimating f involve two steps:

- $oldsymbol{0}$ Based on domain knowledge, make assumptions about functional form or shape of f.
- The linear model is a common choice for the shape of *f*:

$$f(X_1) = \beta_0 + \beta_1 X_1$$
 simple linear $f(X_1, \dots, X_p) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$ multilinear

After a model has been chosen, we implement a procedure for estimating the parameters of the model that minimizes the reducible error.

Parametric methods for estimating f involve two steps:

- $oldsymbol{0}$ Based on domain knowledge, make assumptions about functional form or shape of f.
- The linear model is a common choice for the shape of f:

$$f(X_1) = \beta_0 + \beta_1 X_1$$
 simple linear $f(X_1, \dots, X_p) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$ multilinear

- After a model has been chosen, we implement a procedure for estimating the parameters of the model that minimizes the reducible error.
- In the case of the linear model, we estimate the values of β_0, \ldots, β_p using the *method* of least squares.

$$\hat{\beta}_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$
 $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$

Non-parametric methods forgo assumptions on the shape of f, working instead in a very general class of functions.

 In doing so, non-parametric models avoid the problem of mischaracterizing the relationship between predictors and response

- In doing so, non-parametric models avoid the problem of mischaracterizing the relationship between predictors and response
- However, non-parametric models run the risk of overfitting, where the model closely
 matches the observed data, but does not represent the true unobserved relationship
 between the variables

- In doing so, non-parametric models avoid the problem of mischaracterizing the relationship between predictors and response
- However, non-parametric models run the risk of overfitting, where the model closely
 matches the observed data, but does not represent the true unobserved relationship
 between the variables
 - How is this possible?

- In doing so, non-parametric models avoid the problem of mischaracterizing the relationship between predictors and response
- However, non-parametric models run the risk of overfitting, where the model closely
 matches the observed data, but does not represent the true unobserved relationship
 between the variables
 - How is this possible?
- Non-parametric models often require orders of magnitude more data to make accurate predictions, compared to parametric models

- In doing so, non-parametric models avoid the problem of mischaracterizing the relationship between predictors and response
- However, non-parametric models run the risk of overfitting, where the model closely
 matches the observed data, but does not represent the true unobserved relationship
 between the variables
 - How is this possible?
- Non-parametric models often require orders of magnitude more data to make accurate predictions, compared to parametric models
- Some examples of non-parametric models include: K Nearest Neighbors, Spline Regression, Support Vector Machines, and Neural Networks