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Foundations of Stat Learning

Outline

In today’s class, we will. . .

• Discuss the goals of statistical learning algorithms
• Survey some of the most common methods for statistical learning
• Practice coding in R
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Section 1

Foundations of Stat Learning
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Foundations of Stat Learning

Review

• Stat learning is collection of tools to understand data

• Tools are often divided into supervised and unsupervised methods.
• Supervised: involve building models to predict the value of one or more output variables
• Unsupervised: seek to learn about relationships and structure within data

• Supervising learning is divided into two tasks, depending on output variable’s type:
• Regression: Predicting (estimating) numeric value of quantitative variables
• Classification: Predicting (classifying) qualitative level of categorical variables
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Foundations of Stat Learning

Supervised Learning

• Supervised methods study of the relationships between predictor variables X1, . . . , Xp
for a population, and one or more response variables Y1, Y2, . . . .

• Ex: For a newly published book, given its genre (X1) , page count (X2), whether author
has previously published (X3), and author visibility (X4), predict how many copies (Y1)
of the book will be sold 1 year after publication, as well as number of consecutive weeks
(Y2) book will sell at least 100 units.

• In the simplest regression tasks, we observe the values of one quantitative response Y ,
as well as p many predictors X1, . . . , Xp (these may be quantitative or categorical)

• We assume there is a certain relationship between response and predictors:

Y = f (X1, . . . , Xp) + ϵ

• The function f is called the model or regression function and the random variable ϵ is
the error term

• The function f represents our best estimate of the value of Y given X , or the expected
value of Y given X
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Foundations of Stat Learning

Estimating f

• In practice, we will never know the true formula for f .

• Goal of stat learning is to estimate f , given sample data for X1, . . . , Xp and Y .

• Our estimate for the the true model f is called the fitted model f̂ .

• How we estimate f will depend on our research goals.

1 Make predictions about the values of Y using X1, . . . , Xp

• Very interested in finding f̂ that makes accurate predictions for Y
• Less interested in the learning the true form of f
• STA 295: Statistical Learning

2 Make inferences about relationship between Y and X1, . . . , Xp

• Very interested in learning the true form of f

• Less interested in finding f̂ that makes accurate predictions for Y
• STA 310: Statistical Modeling
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Foundations of Stat Learning

An Example

Consider two quantitative variables X and Y

• Suppose, in truth, Y = 1 + 2X + ϵ, where ϵ ∼ N(µ = 0, σ = 0.25).
• The true model is f (x) = 1 + 2x .

f(x) = 1 + 2x

1

2

3

0.00 0.25 0.50 0.75 1.00
X

Y
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Foundations of Stat Learning

An Example

Consider two quantitative variables X and Y
• Suppose, in truth, Y = 1 + 2X + ϵ, where ϵ ∼ N(µ = 0, σ = 0.25).
• But data Y will not always lie on this line:

Y = 1 + 2X + ε

1

2

3

0.00 0.25 0.50 0.75 1.00
X

Y

Prof Wells (STA 295: Stat Learning) Foundations of Statistical Learning January 30th, 2024 8 / 16



Foundations of Stat Learning

An Example

Consider two quantitative variables X and Y
• In reality, we won’t know the true model.
• We only have the observed data

f(X) = ???

1

2

3

0.00 0.25 0.50 0.75 1.00
X

Y
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Foundations of Stat Learning

An Example

Consider two quantitative variables X and Y
• Instead, we create an estimate f̂ based on data
• Here, we use least squares regression to estimate f

f̂(X) = 1.14 + 1.77X
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Foundations of Stat Learning

An Example

Consider two quantitative variables X and Y
• Our estimated model is f̂ (x) = 1.14 + 1.77x
• Which is close to the true model of f (x) = 1 + 2x

f̂(X) = 1.14 + 1.77X

f(X) = 1 + 2X
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Foundations of Stat Learning

Estimating f for Prediction

Prediction is useful in settings where X can be observed, but Y cannot. Ex:

• Suppose, after 8 weeks of the semester, I have collected the following grading
information from each student: a midterm exam score X1, a homework average for the
first 8 weeks X2, and a note indicating whether the student has ever been absent X3.

• Ultimately, I want to estimate the final grade Y for each student.
• Why is it useful to predict Y ?

• To do so, we theorize a model f that takes in X1, X2, X3 as input and outputs our best
guess Ŷ for Y .

• What is one such possible model f ?

• But even if we have a perfect estimate for f in Y = f (X) + ϵ, the predicted value
Ŷ = f (X) of Y may not equal Y , since Y also depends on ϵ.

• What are some sources of error ϵ in the previous model?
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guess Ŷ for Y .

• What is one such possible model f ?

• But even if we have a perfect estimate for f in Y = f (X) + ϵ, the predicted value
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Foundations of Stat Learning

Types of Error

In general, there are two sources of error in a model Ŷ = f̂ (X1, . . . , Xp) + ϵ for the
relationship

Y = f (X1, . . . , Xp) + ϵ

1 Reducible error, in the form of our estimate f̂ for f .

2 Irreducible error, in the form of ϵ

What steps can be taken to improve reducible error?

What about irreducible error?
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relationship

Y = f (X1, . . . , Xp) + ϵ

1 Reducible error, in the form of our estimate f̂ for f .

2 Irreducible error, in the form of ϵ

What steps can be taken to improve reducible error?

What about irreducible error?

Prof Wells (STA 295: Stat Learning) Foundations of Statistical Learning January 30th, 2024 13 / 16



Foundations of Stat Learning

Types of Error

In general, there are two sources of error in a model Ŷ = f̂ (X1, . . . , Xp) + ϵ for the
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Foundations of Stat Learning

Inference

In many settings, we are interested in the relationship between each predictor X1, . . . , Xp
and the response Y .

1 Which predictors are likely to be associated with response?

2 What is the degree and strength of the relationship between significant predictors and
the response?

3 What type of relationship exists between the predictors and the response? (Linear?
Exponential? Something more complicated?)

Ex:
A data set contains information on a professor’s age, gender, tenure-status,

ethnicity, and department. Which of these predictors are associated with course
evaluation scores, and how?

Here, we are trying to infer information about the factors which contribute to course eval
score.
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Foundations of Stat Learning

Parametric Methods

Parametric methods for estimating f involve two steps:

1 Based on domain knowledge, make assumptions about functional form or shape of f .

• The linear model is a common choice for the shape of f :

f (X1) =β0 + β1X1 simple linear
f (X1, . . . , Xp) =β0 + β1X1 + · · · + βpXp multilinear

2 After a model has been chosen, we implement a procedure for estimating the
parameters of the model that minimizes the reducible error.

• In the case of the linear model, we estimate the values of β0, . . . , βp using the method
of least squares.

β̂1 =
∑

(xi − x̄)(yi − ȳ)∑
(xi − x̄)2 β̂0 = ȳ − β̂1x̄
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Foundations of Stat Learning

Non-parametric Methods

Non-parametric methods forgo assumptions on the shape of f , working instead in a very
general class of functions.

• In doing so, non-parametric models avoid the problem of mischaracterizing the
relationship between predictors and response

• However, non-parametric models run the risk of overfitting, where the model closely
matches the observed data, but does not represent the true unobserved relationship
between the variables

• How is this possible?

• Non-parametric models often require orders of magnitude more data to make accurate
predictions, compared to parametric models

• Some examples of non-parametric models include: K Nearest Neighbors, Spline
Regression, Support Vector Machines, and Neural Networks
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