Penalized Regression

Patrick Kim

2024-03-10

```
library(ISLR2)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(ggplot2)
library(glmnet)
## Loading required package: Matrix
## Loaded glmnet 4.1-8
library(ggrepel)
library(tidyr)
##
## Attaching package: 'tidyr'
## The following objects are masked from 'package:Matrix':
##
       expand, pack, unpack
library(recipes)
## Warning: package 'recipes' was built under R version 4.2.3
##
## Attaching package: 'recipes'
## The following object is masked from 'package:Matrix':
##
##
       update
## The following object is masked from 'package:stats':
##
##
       step
```

```
## Attaching package: 'vip'
## The following object is masked from 'package:utils':
##
##
       vi
library(tibble)
set.seed(295) # set seed for reproducibility.
We will be using "Hitters" data in the ISLR2 package, where the "salary" variable will be the response
variable of our prediction model. Let's load the data and do simple exploratory analysis.
# Let's see what variables are contained in the data.
names(Hitters)
##
    [1] "AtBat"
                     "Hits"
                                  "HmRun"
                                               "Runs"
                                                             "RBI"
                                                                          "Walks"
    [7] "Years"
                                                                          "CRBI"
##
                     "CAtBat"
                                   "CHits"
                                               "CHmRun"
                                                             "CRuns"
## [13] "CWalks"
                     "League"
                                   "Division"
                                               "PutOuts"
                                                             "Assists"
                                                                          "Errors"
## [19] "Salary"
                     "NewLeague"
# Check the dimension.
dim(Hitters) # There are 322 observations/rows and 20 variables/columns.
## [1] 322
```

```
## [1] 59
```

library(vip)

```
Hitters <- na.omit(Hitters) # Drop the rows with missing values
dim(Hitters) # We can check that 59 defective rows are dropped from the original 322 rows, resulting in
```

Since we want to predict the "Salary" value using appropriate predictors in the following sections, i sum(is.na(Hitters\$Salary)) # We have 59 missing values for "Salary". Let's proceed to drop all the rows

```
## [1] 263 20
sum(is.na(Hitters))
```

[1] 0

Unlike simple/multivariate linear regression or kNN, penalized regression (Ridge, Lasso) functions in R take matrix as an input for predictors and a vector as an input for the response variable. The input matrix of predictors is called "design matrix", which has the first column of ones to create the constant term, b0, of the regression (take 336 or ask Prof. Wells/me if you want to know why). Thus, we need to extract variables from the dataframe (here, "Hitter") and put them into matrix. We will be using "model.matrix()" function to create a predictor matrix to be used as an input. %%% Side note: linear regression or kNN are formulated/computed in the terms of vectors and matrices, but the functions in R to implement them do not necessitate vector/matrix inputs. The functions do matrix/vector operations internally so that we don't recognize it.

```
X \leftarrow model.matrix(Salary \sim ., data = Hitters)[, -1] \# I \text{ am telling the "model.matrix" function to put evy } \leftarrow Hitters$Salary \# Recall that data frames are collection of column vectors of different variables.
```

parameter (also called "hyperparameter", think of it as a sensitivity of the model). Higher lambda will shrink the coefficients more in terms of L2 (Euclidean) norm and reduce their variance.

```
grid <- 10^seq(10, -2, length = 100) # Create a vector of lambda values. Since we are not doing cross-v
ridge.mod <- glmnet(
    x = X,
    y = y,
    alpha = 0,
    lambda = grid
) # Run the Ridge regression.</pre>
```

The resulting "ridge.mod" is very confusing since it doesn't look like outputs from linear regression or kNN. To access the coefficients, we need to call "coef(ridge.mod)".

```
# Check the dimension of the coefficient matrix dim(coef(ridge.mod)) # It says we have 20 rows and 100 columns, which is consistent with the input of 1
```

[1] 20 100

Recall that Ridge regression is designed to "penalize" the L2 norm of the beta coefficients. As the tuning parameter (lambda) increases, the model penalizes the L2 norm of the beta coefficients heavier, resulting in smaller coefficients. Let's check if our coefficients are consistent with the theory so that the choice of greater lambda leads to smaller beta coefficients.

```
# Check the lambda value for the 1st, 50th and 100th model
ridge.mod$lambda[1] # lambda = 1e+10 = 10000000000

## [1] 1e+10
ridge.mod$lambda[50] # lambda = 11497.57

## [1] 11497.57
ridge.mod$lambda[100] # lambda = 0.01

## [1] 0.01
# Access individual coefficient vectors for each lambda value chosen above
coef(ridge.mod)[, 1]
```

```
##
     (Intercept)
                          AtBat
                                          Hits
                                                        HmRun
                                                                        Runs
##
    5.359257e+02
                   5.443467e-08
                                  1.974589e-07
                                                7.956523e-07
                                                               3.339178e-07
##
             RBI
                          Walks
                                         Years
                                                       CAtBat
                                                                       CHits
                   4.151323e-07
##
    3.527222e-07
                                 1.697711e-06
                                                4.673743e-09
                                                               1.720071e-08
##
          CHmRun
                          CRuns
                                          CRBI
                                                       CWalks
                                                                     LeagueN
##
    1.297171e-07
                  3.450846e-08
                                 3.561348e-08
                                                3.767877e-08 -5.800263e-07
##
       DivisionW
                        PutOuts
                                       Assists
                                                       Errors
                                                                  NewLeagueN
## -7.807263e-06
                   2.180288e-08
                                  3.561198e-09 -1.660460e-08 -1.152288e-07
coef(ridge.mod)[, 50]
```

```
##
     (Intercept)
                          AtBat
                                          Hits
                                                        HmRun
                                                                         Runs
  407.356050200
                                   0.138180344
                                                                 0.230701523
##
                    0.036957182
                                                  0.524629976
##
             RBI
                          Walks
                                         Years
                                                       CAtBat
                                                                       CHits
##
     0.239841459
                    0.289618741
                                   1.107702929
                                                  0.003131815
                                                                 0.011653637
                          CRuns
##
          CHmRun
                                          CRBI
                                                       CWalks
                                                                     LeagueN
##
     0.087545670
                    0.023379882
                                   0.024138320
                                                  0.025015421
                                                                 0.085028114
##
       DivisionW
                        PutOuts
                                                                  NewLeagueN
                                       Assists
                                                       Errors
##
    -6.215440973
                    0.016482577
                                   0.002612988
                                                 -0.020502690
                                                                 0.301433531
```

```
coef(ridge.mod)[, 100]
##
     (Intercept)
                         AtBat
                                        Hits
                                                      HmRun
                                                                     Runs
                   -1.97386151
                                                 3.93660219
##
    164.11321606
                                  7.37772270
                                                              -2.19873625
##
             RRT
                         Walks
                                       Years
                                                     CAtBat
                                                                    CHits
##
     -0.91623008
                    6.20037718
                                 -3.71403424
                                                -0.17510063
                                                               0.21132772
##
          CHmRun
                         CRuns
                                         CRBI
                                                     CWalks
                                                                  LeagueN
##
      0.05629004
                    1.36605490
                                  0.70965516
                                                -0.79582173
                                                              63.40493257
##
       DivisionW
                       PutOuts
                                     Assists
                                                     Errors
                                                               NewLeagueN
## -117.08243713
                    0.28202541
                                  0.37318482
                                                -3.42400281 -25.99081928
# We can see that as we move from 1 to 50 to 100, the coefficients get larger. Now let's check if the L
sqrt(sum(coef(ridge.mod)[-1, 1]^2)) # 8.080244e-06
## [1] 8.080244e-06
sqrt(sum(coef(ridge.mod)[-1, 50]^2)) # 6.360612
## [1] 6.360612
sqrt(sum(coef(ridge.mod)[-1, 100]^2)) # 136.2012
## [1] 136.2012
# As we choose larger tuning parameter, the L2 norm of the regression coefficient gets penalized less,
lam <- grid %>%
  as.data.frame() %>%
  mutate(penalty = ridge.mod$a0 %>% names()) %>%
  rename(lambda = ".")
ridge.results <- ridge.mod$beta %>%
  as.matrix() %>%
  as.data.frame() %>%
  rownames_to_column() %>%
  gather(penalty, coefficients, -rowname) %>%
  left_join(lam)
## Joining with `by = join_by(penalty)`
result_labels <- ridge.results %>%
  group_by(rowname) %>%
  filter(lambda == min(lambda)) %>%
  ungroup() %>%
  top_n(5, wt = abs(coefficients)) %>%
  mutate(var = paste0("x", 1:5))
ggplot() +
  geom_line(data = ridge.results, aes(lambda, coefficients, group = rowname, color = rowname), show.leg
  scale_x_log10() +
  geom_text(data = result_labels, aes(lambda, coefficients, label = var, color = rowname), nudge_x = -.
```


Now let's cross-validate to choose the optimal tuning parameter


```
optimal.ridge.lambda <- cv.ridge$lambda.min # this saves the lambda value with the lowest MSE. Remember optimal.ridge.lambda # explicitly, the lambda value that gives us the lowest MSE is lambda = 25.52821
```

[1] 25.52821

```
lasso.mod <- glmnet(
    X,
    y,
    alpha = 1,
    lambda = grid
) # Run the Lasso regression.

# The plot below shows how greater lambda results in smaller coefficients.
lasso.results <- lasso.mod$beta %>%
    as.matrix() %>%
    as.data.frame() %>%
    rownames_to_column() %>%
    gather(penalty, coefficients, -rowname) %>%
    left_join(lam)
```

```
## Joining with `by = join_by(penalty)`
```

```
result_labels <- lasso.results %>%
  group_by(rowname) %>%
  filter(lambda == min(lambda)) %>%
  ungroup() %>%
  top_n(5, wt = abs(coefficients)) %>%
  mutate(var = paste0("x", 1:5))

ggplot() +
  geom_line(data = lasso.results, aes(lambda, coefficients, group = rowname, color = rowname), show.leg scale_x_log10() +
  geom_text(data = result_labels, aes(lambda, coefficients, label = var, color = rowname), nudge_x = -.
```


Analogous to the Ridge regression, the optimal tuning parameter lambda for Lasso can be chosen using the "cv.glmnet" function.

optimal.lasso.lambda <- cv.lasso\$lambda.min # this saves the lambda value with the lowest MSE. Remember optimal.lasso.lambda # explicitly, the lambda value that gives us the lowest MSE is lambda = 2.220313.

[1] 2.220313

Recall that Lasso regression (1) shrinks the coefficients and (2) selects variables. With the optimal lambda chosen via cross-validation above (lambda = 2.220313), let's see which variables are selected.

```
optimal.lasso <- glmnet(</pre>
 Х,
  alpha=1,
  lambda=2.220313
coef(optimal.lasso) # we can see that "Runs", "RBI", "CAtBat", and "CHits" are omitted in this model wi
## 20 x 1 sparse Matrix of class "dgCMatrix"
##
## (Intercept)
                134.40580935
## AtBat
                  -1.69157543
## Hits
                  5.97284108
## HmRun
                  0.04943773
## Runs
## RBI
## Walks
                  4.99708657
## Years
                 -10.07327200
## CAtBat
## CHits
## CHmRun
                  0.59083783
## CRuns
                  0.71299766
## CRBI
                  0.37491789
## CWalks
                 -0.59215657
```

```
## LeagueN
                33.10488183
## DivisionW
              -119.19786791
## PutOuts
                 0.27640562
## Assists
                 0.19985017
## Errors
                -2.24472742
## NewLeagueN
OLS <- function(X, y) {
 # Check if X and y are compatible in terms of dimensions for further matrix-vector operations
 if (nrow(X) != length(y)) {
    stop("The number of rows in X must be equal to the length of y.")
 }
 # Add a column of ones to X to account for the intercept term (this is called the design matrix)
 X \leftarrow cbind(1, X)
 \# Calculate the OLS estimator beta_hat
 beta_hat <- solve(t(X) %*% X) %*% t(X) %*% y # here, the "solve" function computes the inverse of a g
 return(beta_hat)
}
# The OLS function above gives us the same result as the built-in lm function when y is regressed on X
lm(y \sim X)
##
## Call:
## lm(formula = y \sim X)
##
## Coefficients:
                                             XHmRun
                                                                        XRBI
## (Intercept)
                    XAtBat
                                 XHits
                                                           XRuns
##
     163.1036
                   -1.9799
                                 7.5008
                                             4.3309
                                                         -2.3762
                                                                      -1.0450
##
       XWalks
                    XYears
                               XCAtBat
                                             XCHits
                                                         XCHmRun
                                                                      XCRuns
##
       6.2313
                   -3.4891
                                -0.1713
                                             0.1340
                                                         -0.1729
                                                                       1.4543
##
        XCRBI
                   XCWalks
                               XLeagueN
                                         XDivisionW
                                                        XPutOuts
                                                                     XAssists
##
       0.8077
                   -0.8116
                                62.5994
                                          -116.8492
                                                          0.2819
                                                                       0.3711
##
      XErrors XNewLeagueN
      -3.3608
                  -24.7623
##
OLS(X, y)
##
                     [,1]
##
              163.1035878
## AtBat
               -1.9798729
## Hits
                7.5007675
## HmRun
                4.3308829
## Runs
               -2.3762100
## RBI
               -1.0449620
## Walks
                6.2312863
## Years
               -3.4890543
## CAtBat
               -0.1713405
## CHits
                0.1339910
## CHmRun
               -0.1728611
## CRuns
                1.4543049
```

```
## CRBI 0.8077088
## CWalks -0.8115709
## LeagueN 62.5994230
## DivisionW -116.8492456
## PutOuts 0.2818925
## Assists 0.3710692
## Errors -3.3607605
## NewLeagueN -24.7623251
```